Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кривые распределения




Показатель асимметрии

, - центральный момент третьего порядка

Средняя квадратическая ошибка: , n – число наблюдений

Если , асимметрия существенна и распределение признака в генеральной совокупности не является симметричным. Если , асимметрия несущественна, ее наличие объясняется влиянием случайных обстоятельств.

- правосторонняя асимметрия, - левосторонняя асимметрия.

 

Показатель эксцесса (островершинности)

, - центральный момент четвертого порядка

>0 – высоковершинное, < 0 – низковершинное ( = -2 – предел)

Средняя квадратическая ошибка: n – число наблюдений

Кривая линия, которая отражает закономерность изменения частот в чистом, исключающем влияние случайных факторов виде, называется кривой распределения.

Плотность распределения (расчет теоретических частот)

, - нормированное отклонение

, - определяется по таблице (приложение 1)

 

Критерий согласия К. Пирсона ( для проверки близости теоретического и эмпирического распределений, для проверки соответствия эмпирического распределения закону нормального распределения)

f – эмпирические частоты в интервале, f – теоретические частоты в интервале

Критерий согласия Романовского

, m – число групп, m-3 – число степеней свободы при исчислении частот нормального распределения

Если к<3, то можно принять гипотезу о нормальном характере эмпирического распределения

 

Критерий Колмогорова

, D – максимальное значение разности между накопленными эмпирическими и теоретическими частотами, n – сумма эмпирических частот

 

Распределение Пуассона (теоретические частоты)

, n – общее число независимых испытаний, λ – среднее число появления редкого события в n одинаковых независимых испытаниях, m – частота данного события, е=2,71828

 

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 325; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.