КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Кривые распределения
Показатель асимметрии , - центральный момент третьего порядка Средняя квадратическая ошибка: , n – число наблюдений Если , асимметрия существенна и распределение признака в генеральной совокупности не является симметричным. Если , асимметрия несущественна, ее наличие объясняется влиянием случайных обстоятельств. - правосторонняя асимметрия, - левосторонняя асимметрия.
Показатель эксцесса (островершинности) , - центральный момент четвертого порядка >0 – высоковершинное, < 0 – низковершинное ( = -2 – предел) Средняя квадратическая ошибка: n – число наблюдений Кривая линия, которая отражает закономерность изменения частот в чистом, исключающем влияние случайных факторов виде, называется кривой распределения. Плотность распределения (расчет теоретических частот) , - нормированное отклонение , - определяется по таблице (приложение 1)
Критерий согласия К. Пирсона ( для проверки близости теоретического и эмпирического распределений, для проверки соответствия эмпирического распределения закону нормального распределения) f – эмпирические частоты в интервале, f’ – теоретические частоты в интервале Критерий согласия Романовского , m – число групп, m-3 – число степеней свободы при исчислении частот нормального распределения Если к<3, то можно принять гипотезу о нормальном характере эмпирического распределения
Критерий Колмогорова , D – максимальное значение разности между накопленными эмпирическими и теоретическими частотами, n – сумма эмпирических частот
Распределение Пуассона (теоретические частоты) , n – общее число независимых испытаний, λ – среднее число появления редкого события в n одинаковых независимых испытаниях, m – частота данного события, е=2,71828
Дата добавления: 2015-06-04; Просмотров: 325; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |