КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Выборочное наблюдение
N – объем генеральной совокупности n – объем выборочной совокупности (число единиц, попавших в выборку) - генеральная средняя (среднее значение признака в генеральной совокупности) - выборочная средняя р – генеральная доля (доля единиц, обладающих данным признаком в генеральной совокупности) w – выборочная доля - генеральная дисперсия - выборочная дисперсия - среднее квадратическое отклонение признака в генеральной совокупности S – среднее квадратическое отклонение признака в выборочной совокупности.
Неравенство Чебышеба При неограниченном числе наблюдений, независящих друг от друга из генеральной совокупности с вероятностью сколь угодно близкой к 1, можно утверждать, что расхождение между выборочной и генеральной средней будет сколь угодно малой величиной . Теорема Ляпунова Дает количественную оценку ошибки. При неограниченном объеме из генеральной совокупности с Р расхождения выборочной и генеральной средней равна интегралу Лапласа , - нормированная функция Лапласа (интеграл Лапласа)
Р – гарантированная вероятность t – коэффициент доверия, зависящий от Р
- предельная ошибка выборки , - стандартная среднеквадратическая ошибка , - предельная (максимально возможная) ошибка средней, t – коэффициент кратности средней ошибки выборки, зависящий от вероятности, с которой гарантируется величина предельной ошибки , - предельная (максимально возможная) ошибка доли Средняя ошибка (n>30) при случайной повторной выборке: , При случайной бесповторной выборке: ,
Дата добавления: 2015-06-04; Просмотров: 367; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |