КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теоретическое введение. Изучение явления интерференции
Изучение явления интерференции Цель работы: изучение интерференции света на тонкой пленке методом колец Ньютона, определение длины световой волны и радиуса кривизны линзы. Принадлежности: установка для наблюдения колец Ньютона, источник света, светофильтры.
Интерференция света – явление наложения когерентных световых волн, в результате которого происходит перераспределение светового потока в пространстве (возникновение максимумов и минимумов интенсивности света). Когерентные волны – волны одинаковой частоты, разность фаз которых остается постоянной во времени, а плоскости колебаний световых векторов совпадают. Естественные источники света не являются когерентными, поскольку излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10-8с и протяженностью около трех метров. Эти цуги, налагаясь друг на друга, образуют световую волну. Фаза световой волны изменяется с течением времени, поскольку излучение одной группы атомов сменяется излучением другой. Время, за которое случайные изменения фазы в световой волне достигают значения π, называют временем когерентности. За это время волна становится некогерентной к самой себе. Для осуществления когерентности необходимо разделить один и тот же световой пучок на два и заставить их встретиться снова так, чтобы оптическая разность хода между интерферирующими лучами была меньше длины когерентности. В зависимости от способа разбиения пучка на два существует два разных метода получения когерентных «источников»: метод деления волнового фронта и метод деления амплитуды. В методе деления волнового фронта, который пригоден только для достаточно малых источников, исходящий от источника пучок делится на два: либо проходя через два близко расположенных отверстия, либо отражаясь от зеркальных или полупрозрачных поверхностей (метод Юнга, бизеркала Френеля, бипризма Френеля, билинза Бийе, зеркало Ллойда и др.). Во втором методе, который пригоден как для малого, так и протяженного источников, световой пучок делится путем прохождения и отражения от полупрозрачной поверхности (интерференция от плоскопараллельной пластинки – полосы равного наклона, интерференция от пластинки переменной толщины – полосы равной толщины). Оптическим путем называется произведение показателя преломления среды n на геометрическую длину пути S в данной среде: (1) Разность оптических длин, проходимых световыми волнами, называется оптической разностью хода: (2) Разность фаз налагаемых световых волн связана с их оптической разностью хода соотношением (3) где λ0 – длина волны в вакууме. Из этого соотношения следует, что если оптическая разность хода равна четному числу полуволн или целому числу длин волн в вакууме (4) то разность фаз δ оказывается кратной 2π, лучи в точку наблюдения приходят в одной фазе и амплитуда суммарной волны увеличивается, следовательно, соотношение (4) определяет условие интерференционного максимума. Если ∆ равна нечетному числу полуволн в вакууме, (5) то так что колебания в точку наблюдения приходят в противофазе и гасят друг друга. Следовательно, условие (5) есть условие интерференционного минимума. Интерференционную картину полос равной толщины можно наблюдать от воздушной прослойки, образованной плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой (рис. 1).
Рис.1. При нормальном падении света, геометрическим местом точек одинаковой толщины является окружность, и поэтому соответствующие полосы равной толщины будут иметь вид концентрических окружностей с центром в точке соприкосновения линзы с плоскопараллельной пластинкой. Отраженные от линзы и плоскопараллельной пластины лучи 1 и 2 распространяются практически вдоль одного направления. Их оптическая разность хода (6) где d – толщина воздушной прослойки, слагаемое λ∕2 учитывает изменение фазы волны на противоположную (потеря полуволны) при отражении от оптически более плотной среды (от плоскопараллельной пластинки). Условия максимумов и минимумов интерференции для колец Ньютона имеют вид: (максимум); (7) (минимум), (8) где k=0,1,2,3…- порядок интерференционного максимума и минимума (очевидно, максимума 0-го порядка не будет); dk – толщины воздушного зазора, для которых будут наблюдаться светлые и темные интерференционные кольца. Связь толщины воздушного слоя dk с радиусом кривизны линзы R определяется из (рис. 1). Так как R намного больше dk, то величиной dk2 можно пренебречь, тогда (9) Из формул (6) и (7) следует (10) Так как невозможно добиться идеального соприкосновения линзы с пластиной в одной точке, целесообразно вычислять длину волны по разности радиусов двух темных колец , (11) где k и m –номера интерференционных колец.
Дата добавления: 2015-06-04; Просмотров: 309; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |