КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение Паули. Стационарное уравнение Паули
Уравнение Паули — уравнение нерелятивистской квантовой механики, описывающее движение заряженной частицы со спином 1/2 (например, электрона) во внешнем электромагнитном поле. Уравнение Паули является обобщением уравнения Шрёдингера, учитывающим наличие у частицы собственного механического момента импульса — спина. Частица со спином 1/2 может находиться в двух различных спиновых состояниях с проекциями спина +1/2 и −1/2 на некоторое (произвольно выбранное) направление, принимаемое обычно за ось z. В соответствии с этим волновая функция частицы (где r — координата частицы, t — время) является двухкомпонентной: При поворотах координатных осей и преобразуются как компоненты спинора. В пространстве спинорных волновых функций скалярное произведение и имеет вид Операторы физических величин являются матрицами 2х2, которые для величин (наблюдаемых), не зависящих от спина, кратны единичной матрице. В силу общих законов электродинамики электрически заряженная система с отличным от нуля спиновым моментом обладает и магнитным моментом, пропорциональным : (g-гиромагнитное отношение). Для орбитального момента , где e — заряд, m — масса частицы; спиновое гиромагнитное отношение оказывается в два раза большим: . Во внешнем магнитном поле напряжённости магнитный момент обладает потенциальной энергией , добавление которой в гамильтониан H электрона во внешнем электронно-магнитном поле с потенциалами и A приводит к уравнению Паули: где — оператор импульса, — единичный оператор, а пропорционален оператору спина: . Предложенное первоначально на основе эвристических соображений уравнение Паули оказалось естественным следствием релятивистски-инвариантногоуравнения Дирака в слаборелятивистском приближении, в котором учитываются лишь первые члены разложения по обратным степеням скорости света. Если напряжённость внешнего магнитного поля не зависит от пространственных координат, то орбитальное движение частицы и изменение ориентации её спина происходят независимо. Волновая функция при этом имеет вид , где — скалярная функция, подчиняющаяся уравнению Шрёдингера, а спинор удовлетворяет уравнению Из этого уравнения следует, что среднее значение спина прецессирует вокруг направления магнитного поля: Здесь — циклотронная частота, — единичный вектор вдоль магнитного поля. На основе уравнения Паули может быть рассчитано расщепление уровней электронов в атоме во внешнем магнитном поле с учётом спина (эффект Зеемана). Однако более тонкие релятивистские эффекты в атомах, обусловленные спином электрона, могут быть описаны лишь при учёте более высоких членов разложения релятивистского уравнения Дирака по обратным степеням скорости света.
Дата добавления: 2015-06-04; Просмотров: 1962; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |