КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Момент количества движения
Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы определили оператор J^z через R ^ z (j) — оператор поворота на угол j вокруг оси z. Рассмотрим сейчас систему, описываемую всего лишь одной-единственной волновой функцией y(r), которая является функцией одних только координат и не учитывает того факта, что спин у электрона должен быть направлен либо вверх, либо вниз. Это значит, что мы собираемся пока пренебречь внутренним моментом количества движения и намерены думать только об орбитальной части. Чтобы подчеркнуть различие, обозначим орбитальный оператор L^z и определим его через оператор поворота на бесконечно малый угол e формулой (напоминаем: это определение применимо только к состоянию |y>, у которого нет внутренних спиновых переменных, а есть только зависимость от координат r: х, у, z). Если мы взглянем на состояние |y> из новой системы координат, повернутой вокруг оси z на небольшой угол e, то увидим новое состояние: Если мы решили описывать состояние |y> в координатном представлении, т. е. с помощью его волновой функции y (r), то следует ожидать такого равенства: Что же такое ? А вот что. Точка Р (х, у) в новой системе координат (на самом деле х', у', но мы убрали штрихи) раньше имела координаты x- ey и y +e x (фиг. 18.2). Фиг. 18.2. Поворот осей вокруг оси z на малый угол e.
Поскольку амплитуда того, что электрон окажется в точке Р, не меняется от поворота системы координат, то можно писать (напоминаем, что e — малый угол). Это означает, что Это и есть наш ответ. Обратите, однако, внимание, что это определение эквивалентно такому: Или, если вернуться к нашим квантовомеханическим операторам, можно написать Эту формулу легко запомнить, потому что она похожа на знакомую формулу классической механики: это z-компонента векторного произведения L = r X p. (18.72) Одна из забавных сторон манипуляций с операторами заключается в том, что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все повторялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики. Вот вам уравнение, которое отличается. В классической физике хрх-рxх= 0. А что в квантовой механике? Подсчитаем это в x -представлении. Чтобы было видно, что мы делаем, приложим это к некоторой волновой функции y(x). Пишем или Вспомним теперь, что производные действуют на всё, что справа. Получаем Ответ не нуль. Вся операция попросту равнозначна умножению на - h/i: Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики! Отметим, что если два каких-то оператора А и В, взятые в сочетании не дают нуля, то мы говорим, что «операторы не перестановочны», или «операторы не коммутируют». А уравнение наподобие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для pх и у (или коммутатор рх и у) имеет вид Существует еще одно очень важное перестановочное соотношение. Оно относится к моментам количества движения. Вид его таков: Если вы хотите приобрести некоторый опыт работы с операторами x ^ и p ^, попробуйте доказать эту формулу сами. Интересно заметить, что операторы, которые не коммутируют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).
Дата добавления: 2015-06-04; Просмотров: 431; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |