Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Стабилитроны. Стабилитронами называют полупроводниковые диоды, использующие особенность обратной ветви вольт-амперной характеристики на участке пробоя изменяться в широком




Стабилитронами называют полупроводниковые диоды, использующие особенность обратной ветви вольт-амперной характеристики на участке пробоя изменяться в широком диапазоне изменения токов при сравнительно небольшом отклонении напряжения. Это свойство широко используется при создании специальных устройств – стабилизаторов напряжения.

Напряжение пробоя стабилитрона зависит от ширины р–п -перехода, которая определяется удельным сопротивлением материала полупроводника. Поэтому существует определенная зависимость пробивного напряжения (т.е. напряжения стабилизации) от концентрации примесей.

Низковольтные стабилитроны выполняют на основе сильно легированного кремния. Ширина р–п -перехода в этом случае получается очень маленькой, а напряженность электрического поля потенциального барьера – очень большой, что создает условия для возникновения туннельного пробоя. При большой ширине р–п -перехода пробой носит лавинный характер. При напряжении стабилизации от 3 до 6 В в p–n- переходах наблюдается практически туннельный пробой. В диапазоне от 6 до 8 В имеют место процессы как туннельного, так и лавинного пробоя, а в пределах 8K200 В – только лавинного.

Конструкции стабилитронов очень незначительно, а в некоторых случаях практически не отличаются от конструкций выпрямительных диодов (рис. 2.18).

Вольт-амперная характеристика стабилитрона представлена на рис. 2.18, б. Рабочий ток стабилитрона (его обратный ток) не должен превышать максимально допустимое значение во избежание перегрева полупроводниковой структуры и выхода его из строя.

Существенной особенностью стабилитрона является зависимость его напряжения стабилизации от температуры. В сильно легированных полупроводниках вероятность туннельного пробоя с увеличением температуры возрастает. Поэтому напряжение стабилизации у таких стабилитронов при нагревании уменьшается, т.е. они имеют отрицательный температурный коэффициент напряжения стабилизации (ТКН):

, (2.4)

который, показывает – на сколько процентов изменится напряжение стабилизации при изменении температуры прибора на 1 C.

В слабо легированных полупроводниках при увеличении температуры уменьшается длина свободного пробега носителей, что приводит к увеличению порогового значения напряжения, при котором начинается лавинный пробой. Такие стабилитроны имеют положительный ТКН (рис. 2.19).

Для устранения этого недостатка и создания термокомпенсированных стабилитронов последовательно в цепь стабилитрона включают обычные диоды в прямом направлении. Как известно, у обычных диодов в прямом направлении падение напряжения на р–п -переходе при нагревании уменьшается. И если последовательно со стабилитроном (рис. 2.20) включить n диодов в прямом направлении, где , ( – изменение прямого падения напряжения на диоде при изменении от T1 до T2), то можно почти полностью компенсировать температурную погрешность стабилитрона.

Основные параметры стабилитронов:

1. Напряжение стабилизации – напряжение на стабилитроне при протекании через него тока стабилизации;

2. Ток стабилизации – значение постоянного тока, протекающего через стабилитрон в режиме стабилизации;

3. Дифференциальное сопротивление стабилитрона – дифференциальное сопротивление при заданном значении тока стабилизации, т.е. ;

4. Температурный коэффициент напряжения стабилизации – отношение относительного изменения напряжения стабилизации стабилитрона к абсолютному изменению температуры окружающей среды при постоянном значении тока стабилизации:

Предельные параметры стабилитронов:

1. Минимально допустимый ток стабилизации – наименьший ток через стабилитрон, при котором напряжение стабилизации находится в заданных пределах;

2. Максимально допустимый ток стабилизации – наибольший ток через стабилитрон, при котором напряжение стабилизации находится в заданных пределах, а температура перехода не выше допустимой;

3. Максимально допустимая рассеиваемая мощность – мощность, при которой не возникает теплового пробоя перехода.

Выводы:

1. Полупроводниковый стабилитрон - кремниевый диод, работающий при обратном напряжении в режиме электрического пробоя.

2. Необходимое напряжение стабилизации получают выбором соответствующей концентрации примеси в базе диода.

 

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 4032; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.