Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Истинный «мозг» клетки




 

Как только я понял, как работают интегральные мембранные белки, мне стало ясно, что поведение клетки обусловлено, прежде всего, ее взаимодействием с окружающей средой, а вовсе не генетическим кодом. Безусловно, генетические программы, запечатленные в содержащихся в ядре клетки молекулах ДНК, — уникальная вещь, формировавшаяся в течение трех миллиардов лет эволюции. Но при всей своей уникальности они не управляют функционированием клетки. Даже с чисто логической точки зрения гены не могут служить раз и навсегда определенной программой жизни клетки или организма, ведь выживаемость последних определяется умением динамически приспосабливаться к изменчивому окружению.

Способность мембраны «осмысленно» взаимодействовать с окружающей средой делает ее самым настоящим клеточным «мозгом». Давайте подвергнем мембрану такому же испытанию, какому мы подвергали ядро клетки, пробуя его на роль клеточного «мозга». Если разрушить мембрану, клетка погибнет — точно так же, как погибнет человек, если удалить ему мозг. Даже если оставить мембрану в целости и уничтожить только лишь ее белки-рецепторы (это легко делается в лаборатории при помощи пищеварительных ферментов), клетка окажется «живым трупом». Она впадет в коматозное состояние из-за того, что не будет больше получать необходимые для своего функционирования сигналы извне. Аналогичным образом, клетка впадает в кому, если обездвижить ее белки-эффекторы.

Демонстрировать «осмысленное» поведение клетка может только при наличии функционирующей мембраны, имеющей как рецепторы (обеспечивающие восприятие информации), так и эффекторы (обеспечивающие действие). Эти белковые комплексы — основные составляющие клеточного «разума».

Впрочем, нельзя забывать о том, что, разбирая клетку на элементарные винтики и гаечки, мы рискуем впасть в редукционизм. Невозможно понять поведение клетки, изучив лишь один из ее механизмов. Необходимо рассматривать деятельность клетки в целом. В этом состоит холистический — противоположный редукционистскому — подход, который я намереваюсь развить в следующей главе.

На клеточном уровне история эволюции — это в значительной мере история увеличения количества базовых единиц «разума» — интегральных мембранных белков — рецепторов и эффекторов. Эта задача решалась клетками за счет растяжения и, соответственно, увеличения площади собственных мембран.

У примитивных организмов-прокариот клеточная мембрана осуществляет все основные физиологические функции — пищеварение, дыхание, выделение. На последующих этапах эволюции эти обязанности перешли к органеллам эукариотической цитоплазмы. В результате в мембране освободилось место для большего количества интегральных мембранных белков. Учтем также, что эукариоты в тысячи раз крупнее прокариот, что влечет за собой колоссальное увеличение площади их мембранной поверхности — а значит, и доступного места для новых интегральных мембранных белков.

Итак, в процессе эволюции клеточная мембрана растягивалась, но у этой ее способности есть физический предел. Начиная с какого-то момента, растянутая и истончившаяся клеточная мембрана уже не сможет удержать внутри себя цитоплазму. Представьте, что вы наполняете водой воздушный шарик. Какое-то количество воды он вполне сможет выдержать. Но если вы будете упорствовать, шарик лопнет и вода забрызгает все вокруг. Когда клеточная мембрана растянулась до критической величины, эволюция индивидуальной клетки подошла к своему пределу. Тогда отдельные клетки, которые в первые три миллиарда лет эволюции были единственными организмами на нашей планете, нашли новый способ увеличить свою информированность об окружающей среде. Они начали объединяться, образуя многоклеточные сообщества, — я говорил об этом в первой главе.

В целом, и отдельной клетке, и многоклеточному организму приходится, во имя собственного выживания, решать одни и те же задачи. Разница лишь в том, что, когда клетки образовали многоклеточные организмы, у них появилась специализация. В многоклеточных сообществах существует разделение труда, что хорошо видно на примере тканей и органов, выполняющих те или иные специализированные функции. В одиночной клетке дыхание осуществляется митохондриями; в многоклеточном организме ту же функцию выполняют миллиарды специализированных клеток, образующих легкие. Еще один пример: в одиночной клетке движение возникает в резуль­тате взаимодействия белков цитоплазмы, называемых актином и миозином; в многоклеточном организме работу по обеспечению подвижности выполняют сообщества специализированных мышечных клеток, каждая из которых содержит большое количество актина и миозина. И, самое главное, если в отдельной клетке задачу восприятия информации об окружающей среде и необходимого отклика решает клеточная мембрана, то в нашем организме эти функции перешли к специализированной группе клеток, которую мы называем нервной системой!

Повторю еще раз: несмотря на то, что мы достаточно далеко отстоим от одноклеточных организмов, нам есть чему у них поучиться. Даже такой сложнейший орган, как человеческий мозг, охотнее раскроет нам свои тайны, если мы во всех подробностях ознакомимся с работой его клеточного эквивалента — мембраны.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 384; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.