КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сходящимися называются силы, линии действия которых пересекаются в одной точке
Условия и уравнения равновесия сходящейся системы сил При решении задач рекомендуется вычислять абсолютное значение проекции силы как произведение модуля силы на косинус острого угла между линией действия силы и осью, определяя знак проекции непосредственно по чертежу. Проекции силы на плоскость и оси
. Проецируя векторы векторного равенства на координатные оси, имеем
. Рис. 2.3 При вычислении проекции силы на ось возможны следующие частные случаи: 1.Проекция положительна: . 2. Проекция равна нулю: . 3. Проекция отрицательна: , где β - острый угол между линией действия силы и осью. Если к телу приложены две силы, линия действия которых пересекаются в одной точке, то их равнодействующая приложена в точке А пересечения линий действия сил; она изображается диагональю параллелограмма, построенного на этих силах (рис. 2.4). Построение параллелограмма сил можно заменить построением треугольника сил AВD (рис. 2.5).
Рис. 2.4 Рис. 2.5
Направление равнодействующей силы по контуру силового треугольника противоположно направлению обхода контура треугольника, определяемому слагаемыми силами.
При помощи параллелограмма или треугольника сил можно решить и обратную задачу - разложить силу на две составляющие и , приложенные в той же точке и направленные по заданным линиям действия KL и DE (рис. 2.6 и 2.7).
Рис. 2.6 Рис. 2.7
Используя известные формулы тригонометрии (теорему синусов), имеем:
. Так как , то .
Дата добавления: 2015-06-04; Просмотров: 601; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |