КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Иммунная система пищеварительного тракта
Пищеварительный тракт имеет ряд защитных механизмов против патогенных антигенных факторов. Среди них уже назывались антибактериальные свойства слюны, сока поджелудочной железы, желчи, протеолитическая активность секретов, моторная деятельность кишечника, характерная ультраструктура поверхности слизистой оболочки тонкой кишки, препятствующая проникновению через нее бактерий. К этим неспецифическим барьерным механизмам следует добавить специфическую иммунную систему защиты, локализованную в пищеварительном тракте и составляющую важную часть общей многокомпонентной иммунной системы человека. В пищеварительном тракте имеется три группы иммунокомпе-тентных элементов лимфоидной ткани: 1) лимфоидные фолликулы на всем протяжении пищеварительного тракта; в подвздошной кишке и червеобразном отростке эти фолликулы образуют большие скопления в виде групповых лимфоидных узелков (пейеровы бляшки); 2) плазматические и Т-лимфоидные клетки слизистой оболочки пищеварительного тракта; 3) малые неидентифицированные лимфоидные клетки. К органам местной иммунной системы пищеварительного тракта, где локализованы эти элементы, относятся миндалины глоточного кольца в устье дыхательного и пищеварительного трактов; солитарные лимфатические фолликулы, расположенные в стенке кишки на всем ее протяжении, крупные лимфоидные образования — пейеровы бляшки в наибольшем количестве расположены в подвздошной кишке, встречаются в двенадцатиперстной и тощей кишке; червеобразный отросток; плазматические клетки слизистой оболочки желудка и кишечника. Местная иммунная система пищеварительного тракта обеспечивает две основные функции: 1) распознавание и индукцию толерантности к пищевым антигенам; 2) блокирующий эффект по отношению к патогенным микроорганизмам. Миндалины осуществляют местную защиту путем выделения в полость глотки иммуноглобулинов, интерферона, лизоцима, лимфоцитов, макрофагов и простагландинов. Они способствуют формированию иммунной памяти путем образования клона лимфоцитов, которые подготавливают иммунную систему к повторной встрече с антигенами. Групповые лимфоидные узелки, или пейеровы бляшки, являясь иммунокомпетентными элементами тонкой кишки, участвуют в распознавании пищевых антигенов химуса и формировании местного иммунного ответа. Червеобразный отросток является важнейшим компонентом местной иммунной системы. Вследствие поступления в него антигенов пищевого и микробного происхождения развивается иммунный ответ. Плазматические клетки свободно располагаются в слизистой оболочке и строме ворсинок кишки под эпителием. Они синтезируют и секретируют иммуноглобулины всех известных в настоящее время классов (G, M, A, D, Е). Различные отделы пищеварительного тракта в норме содержат различное количество плазмоцитов, продуцирующих соответственно разное количество иммуноглобулинов (Ig) разных классов с преобладанием IgA. При напряженном иммуногенезе его секреция многократно возрастает. Секреторный иммуноглобулин A (slgA) — особая форма данного класса глобулинов; он не разрушается протеолитическими пищеварительными ферментами. Нормальная кишечная микрофлора человека имеет большое значение в развитии секреторной иммунной системы и особенно в синтезе и секреции slgA. Он находится на апикальной части эпителиальных клеток и в межэпителиальном пространстве, на поверхности слизистых оболочек, в смеси с сек-ретированной слизью. Она вместе с антигенами и микроорганизмами удаляется в полость пищеварительного тракта. Способность отталкиваться от эпителиальных клеток проявляется у slgA после соединения его с антигеном. slgA осуществляет защитную функцию, непосредственно действуя на бактерии, связывая их и препятствуя внедрению в глубь слизистой оболочки. slgA дезактивирует токсичные продукты деятельности бактерий, небактериальные продукты и способствует последующему их разрушению протеолитическими ферментами. Органы местной иммунной защиты пищеварительного тракта обеспечивают защитный иммунный ответ на контакт с антигенами, перорально поступающими в организм человека из внешней среды. Выраженность ответной реакции зависит не только от силы антигенной стимуляции, но и от функционального состояния макроорганизма, его нервной и эндокринной регуляторных систем, в том числе и от влияний регуляторных пептидов пищеварительного тракта. При всей своей автономности местная иммунная система пищеварительного тракта тем не менее состоит в сложной связи с общей иммунной системой и другими местными иммунными системами человека. Глава 10. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ. ПИТАНИЕ 10.1. ОБМЕН ВЕЩЕСТВ Из предыдущего изложения курса физиологии ясно значение обмена веществ (метаболизма) как характерного признака жизни. В результате обмена веществ непрерывно образуются, обновляются и разрушаются клеточные структуры, синтезируются и разрушаются различные химические соединения. В организме динамически уравновешены процессы анаболизма (ассимиляции) — биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) — расщепление сложных молекул компонентов клеток. Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболи-ческих процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При этом происходит превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию. Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белков, липидов, углеводов, витаминов, минеральных солей и воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его существования. Это достигается путем питания. Необходимо также, чтобы организм очищался от конечных продуктов распада, которые образуются при расщеплении различных веществ. Это достигается работой органов выделения. В учебнике не приводится динамика химических превращений, происходящих в тканях, что является задачей биологической химии. Физиологи обычно определяют затраты веществ и энергии организмом и устанавливают, как эти затраты должны быть восполнены с помощью полноценного питания. В дальнейшем изложении мы раздельно рассмотрим обмен белков, липидов, углеводов, минеральных солей и значение витаминов, хотя превращения всех этих веществ в организме происходят одновременно. Выделение отдельных звеньев обмена представляет собой искусственное расчленение единого биологического процесса. Это делается лишь для удобства изучения, а также для того, чтобы показать неодинаковое физиологическое значение перечисленных выше веществ. 10.1.1. Обмен белков < Белки занимают ведущее место среди органических элементов, на их долю приходится более 50 % сухой массы клетки. Они выполняют ряд важнейших биологических функций. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков — актина и миозина. Поступающий с пищей из внешней среды белок служит пластической и энергетической целям. Пластическое значение белка состоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обеспечении организма энергией, образующейся при расщеплении белков. В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и наряду с этим — синтез белков. Таким образом, белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей). Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность. Для нормального обмена белков, являющихся основой их синтеза, необходимо поступление с пищей в организм различных аминокислот. Изменяя количественное соотношение между поступающими в организм аминокислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и общему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме — заменимые аминокислоты, а 8 не синтезируются — незаменимые аминокислоты. Без.незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан. Белки обладают различным аминокислотным составом, поэтому и возможность их использования для синтетических нужд организма неодинакова. В связи с этим было введено понятие биологической ценности белков пищи. Белки, содержащие весь необ- ходимый набор аминокислот в таких соотношениях, которые обеспечивают нормальные процессы синтеза, являются белками биологически полноценными. Наоборот, белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, являются неполноценными. Так, неполноценными белками являются желатина, в которой имеются лишь следы цистина и отсутствуют триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина; и некоторые другие. Наиболее высока биологическая ценность белков мяса, яиц, рыбы, икры, молока. В связи с этим пища человека должна не просто содержать достаточное количество белка, но обязательно иметь в своем составе не менее 30% белков с высокой биологической ценностью, т. е. животного происхождения. У людей встречается форма белковой недостаточности, развивающаяся при однообразном питании продуктами растительного происхождения с малым содержанием белка. При этом возникает заболевание, получившее название «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет. Биологическая ценность одного и того же белка для разных людей различна. Вероятно, она не является какой-то определенной величиной, а может изменяться в зависимости от состояния организма, предварительного пищевого режима, интенсивности и характера физиологической деятельности, возраста, индивидуальных особенностей обмена веществ и других факторов. Практически важно, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой — других, в сумме могли обеспечить потребности организма. Азотистый баланс. Это соотношение количества азота, поступившего в организм с пищей и выделенного из него. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка. Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом. Усвоение азота вычисляют по разности содержания его в принятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного организмом белка, так как в белке содержится в среднем 16% азота, т. е. 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить количество усвоенного белка. Для того чтобы установить количество разрушенного белка, необходимо знать общее количество азота, выведенного из организма. Азотсодержащие продукты белкового обмена (мочевина, мочевая кислота, креатинин и др.) выделяются преимущественно с мочой и частично с потом. В условиях обычного, неинтенсивного потоотделения количество азота в поте можно не принимать во внимание, поэтому для определения количества распавшегося в организме белка обычно находят количество азота в моче и умножают на 6,25. Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище. В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением массы мышц. В этих условиях происходит задержка азота в организме (ретенция азота). Белки в организме не депонируются, т. е. не откладываются в запас, поэтому при поступлении с пищей значительного количества белка только часть его расходуется на пластические цели, большая же часть — на энергетические цели. Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты. Распад белка в организме протекает непрерывно. Степень распада белка обусловлена характером питания. Минимальные затраты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3—3,1/2 раза меньше, чем при полном голодании. Углеводы при этом выполняют сберегающую белки роль. Распад белков в организме, происходящий при отсутствии белков в пище и достаточном введении всех других питательных веществ (углеводы, жиры, минеральные соли, вода, витамины), отражает те минимальные траты, которые обусловлены основными процессами жизнедеятельности. Эти наименьшие потери белка для организма в состоянии покоя, пересчитанные на 1 кг массы тела. были названы Рубнером коэффициентом изнашивания. Коэффициент изнашивания для взрослого человека равен 0,028—0,075 г азота на 1 кг массы тела в сутки. Отрицательный азотистый баланс развивается при полном отсутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не исключена возможность дефицита белка при нормальном поступлении, но при значительном увеличении потребности в нем организма. Во всех этих случаях имеет место белковое голодание. При белковом голодании даже в случаях достаточного поступления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы тела, зависящая от того, что затраты тканевых белков (минимальные в этих условиях и равные коэффициенту изнашивания) не компенсируются поступлением белков с пищей, поэтому длительное белковое голодание в конечном счете, так же как и полное голодание, неизбежно приводит к смерти. Особенно тяжело переносит белковое голодание растущий организм, у которого в этом случае происходит не только потеря массы тела, но и остановка роста, обусловленная недостатком пластического материала, необходимого для построения клеточных структур. Регуляция обмена белков. Нейроэндокринная регуляция обмена белков осуществляется рядом гормонов. Соматотропный гормон гипофиза во время роста организма стимулирует увеличение массы всех органов и тканей. У взрослого человека он обеспечивает процесс синтеза белка за счет повышения проницаемости клеточных мембран для аминокислот, усиления синтеза РНК в ядре клетки и подавления синтеза катепси-нов — внутриклеточных протеолитических ферментов. Существенное влияние на белковый обмен оказывают гормоны щитовидной железы — тироксин и трийодтиронин. Они могут в определенных концентрациях стимулировать синтез белка и благодаря этому активизировать рост, развитие и дифференциацию тканей и органов. Гормоны коры надпочечников — глюкокортикоиды (гидрокортизон, кортикостерон) усиливают распад белков в тканях, особенно в мышечной и лимфоидной. В печени же глюкокортикоиды, наоборот, стимулируют.синтез белка.
Дата добавления: 2015-06-04; Просмотров: 1751; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |