Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Потребность. В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соедине­ний




ПРЕВРАЩЕНИЕ ЭНЕРГИИ И ОБЩИЙ ОБМЕН ВЕЩЕСТВ

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соедине­ний, поступивших с пищей, превращается в тепловую, механи­ческую и электрическую. Энергия расходуется не только на под­держание температуры тела и выполнение работы, но и на воссоз­дание структурных элементов клеток, обеспечение их жизнедея­тельности, роста и развития организма.

Теплообразование в организме имеет двухфазный характер. При окислении белков, жиров и углеводов одна часть энергии исполь­зуется для синтеза АТФ, другая превращается в теплоту. Теплота, выделяющаяся непосредственно при окислении питательных ве­ществ, получила название первичной теплоты. Обычно на этом этапе большая часть энергии превращается в тепло (первичная теплота), а меньшая используется на синтез АТФ и вновь аккуму-

 


Таблица 10.1. Краткие сведения о витаминах


Витамин


Суточная

взрослого

человека


Основные источники


Физиологическое действие и основные нарушения, возникающие при недостатке


Водорастворимые витамины


50—100 мг
1,4—2,4 мг

С (аскорбиновая кислота)

В| (тиамин)

В2 (рибофлавин) 2—3 мг


Перец, укроп, зеленый лук, томаты, капуста, картофель, ли­моны, земляника, черная смо­родина, шиповник, печень

Зерновые и бобовые культу­ры, печень, почки, сердце

Зерновые и бобовые куль­туры, печень, почки, мясо, серд­це, молоко, яйца


Биологическая роль, вероятно, связана с участием в окис­лительно-восстановительных процессах. При дефиците вита­мина снижается использование белка. Витамин участвует в образовании коллагена сосудистой стенки, повышает антитоксическую функцию печени.

Специфическое действие — предупреждение гиповитами­ноза и цинги.

Общее действие — обеспечение оптимального состояния внутренней среды и устойчивости организма к инфекциям и интоксикациям.

При авитаминозе возникает цинга; поражаются стенки кровеносных сосудов, развиваются мелкие кровоизлияния в коже, кровоточивость десен

Участвует в обмене углеводов, белков и жиров; обеспе­чивает нормальный рост; повышает двигательную и секре­торную деятельность желудка; нормализует работу сердца.

При авитаминозе развивается заболевание бери-бери, основными проявлениями которого являются полиневрит, нарушения деятельности сердца и желудочно-кишечного тракта

Влияет на рост и развитие плода и ребенка.

При авитаминозе у взрослых поражаются глаза [васку-ляризация роговицы, воспаление, помутнение хрусталика (катаракта) ]. Кроме того, поражается слизистая оболочка рта


Продолжение


Витамин


Суточная

потребность

взрослого

человека


Основные источники


Физиологическое действие и основные нарушения, возникающие при недостатке


 


РР (никотиновая кислота)

14—15 мг Говядина, печень, почки,

сердце, рыба — лосось, сельдь

В3 (пантотеновая 10 мг кислота)

Бобовые и зерновые культу­ры, картофель, печень, яйца, рыба — лосось, семга и др.

В6 (пиридоксин) 1,5—3 мг

Вс (фолиевая кис­лота)

Зерновые и бобовые культу­
ры, говядина, печень, свинина,
баранина, сыр, рыба — тунец,
треска, лосось и др. Синтези­
руется микрофлорой кишеч­
ника
400 мкг Салат, капуста, шпинат, то-

маты, морковь, пшеница, рожь, печень, почки, говядина, яйца. Синтезируется микрофлорой кишечника

Bi2 (цианкобаламин) 3 мкг

Печень- рыб, печень и почки рогатого скота. Синтезируется микрофлорой кишечника

Н (биотин)

150—200 мкг Горох, соя, цветная капуста,

грибы, пшеница, яичный жел­ток, печень, почки, сердце


Участвует в реакциях клеточного дыхания и промежу­точного обмена, нормализует секреторную и моторную функции желудочно-кишечного тракта и функции печени.

При авитаминозе развивается пеллагра, характеризую­щаяся воспалением кожи (дерматит), расстройствами функ­ций желудочно-кишечного тракта (понос), поражением сли­зистых оболочек рта и языка, нарушениями психики

Необходим для синтеза жирных кислот, стероидных гор­монов, ацетилхолина и других важных соединений.

При авитаминозе возникают слабость, быстрая утомляе­мость, головокружения, дерматиты, поражения слизистых оболочек, невриты

Обладает широкой биологической активностью. Принимает участие в обмене белков и построении ферментов, регули­рующих обмен аминокислот: участвует в обмене жиров, являясь липотропным фактором; влияет на кроветворение.

При авитаминозе могут возникать эпилептиформные су­дороги, развивается гипохромная анемия

Влияет на синтез нуклеиновых кислот, аминокислот; на­ходится в хромосомах и служит важным фактором размно­жения клеток. Стимулирует и регулирует кроветворение.

При авитаминозе развиваются спру, анемия

Всасывается, соединившись с белком желудочного сока (внутренний фактор Касла). Цианкобаламин называют еще внешним фактором Касла. Влияет на гемопоэз. При авитаминозе развивается злокачественная анемия При употреблении большого количества сырого яичного белка биотин связывается и развивается авитаминоз, прояв­ляющийся дерматитом


Жирорастворимые витамины


А (ретинол)

1,5 мг (5000 ME)

D (кальциферолы) 2,5 мкг

(100 ME)

Е (токоферолы) 10—12 мг

К (филлохиноны) 0,2—0,3 мг


Животные жиры, мясо, рыба, яйца, молоко

Печень рыб, икра, мясо жир­ных рыб, печень млекопитаю­щих и птиц, яйца

Растительные масла, зеленые листья овощей, яйца

Шпинат, капуста, томаты, пе­чень. Синтезируется микрофло­рой кишечника


Оказывает специфическое влияние на функции зрения и размножения. Общее системное действие проявляется в обеспечении нормального роста и развития. Участвует в образовании зрительных пигментов, обеспечивает адаптацию глаз к свету.

При авитаминозе возникают нарушение сумеречного зре­ния, пролиферация эпителия и его ороговение, повреждение роговицы глаз (ксерофтальмия и кератомаляция)

Регулирует обмен кальция и фосфора. При недостатке в детском возрасте развивается рахит (нарушается процесс костеобразования вследствие уменьшения содержания в костях солей кальция и фосфора)

Обладает противоокислительным действием на внутри­клеточные липиды, предохраняет липиды митохондрий от пероксидации; предохраняет эритроциты от гемолиза.

При авитаминозе развиваются дистрофия скелетных мышц, ослабление половой функции

Участвует в синтезе протромбина и других прокоагулян-тов; способствует нормальному свертыванию крови.

При авитаминозе возникают увеличение времени сверты­вания крови, желудочно-кишечные кровотечения, подкожные кровоизлияния


лируется в ее химических макроэргических связях. Так, при окис­лении углеводов 22,7% энергии химической связи глюкозы в про­цессе окисления используется на синтез АТФ, а 77,3% в форме первичной теплоты рассеивается в тканях. Аккумулированная в АТФ энергия используется в дальнейшем для механической рабо­ты, химических, транспортных, электрических процессов и в ко­нечном счете тоже превращается в теплоту, обозначаемую вторич­ной теплотой. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Для определения энергообразования в организме используют прямую калориметрию, непрямую калориметрию и исследование валового обмена.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 553; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.