Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Инженерно-геологические изыскания на полосе варьирования трассы




Современные технические средства, применяемые при инженерно-геологических изысканиях

Инженерно-геологические изыскания выполняют с применением прогрессивных методов производства работ, современных приборов и оборудования.

Одним из эффективных методов инженерно-геологических изысканий и поиска месторождений строительных материалов являются космические съемки и аэрогеологические методы.

Космические съемки применяют для выявления линий тектонических разломов, гидрогеологических условий, мест образования наледей.

Аэрокосмические методы значительно снижают объем трудоемких полевых работ и повышают качество инженерно-геологических изысканий.

При инженерно-геологическом дешифрировании аэрофотоснимков устанавливают типы геоморфологических элементов, контуры генетических и литологических разновидностей грунтов, характер современных физико-геологических явлений, общие инженерно-геологические условия.

По аэрофотоснимкам на основе анализа тона изображений и своеобразному растительному покрову могут быть выявлены участки местности с сырыми и избыточно-увлажненными грунтами, а по характеру рельефа - участки со скальными породами или мягкими грунтами. Сравнительно легко выявляют сухие места с обеспеченным хорошим поверхностным стоком, без признаков заболачивания и с глубоким залеганием грунтовых вод, а также сырые участки с необеспеченным стоком поверхностных вод и с признаками заболачивания даже при достаточно глубоком залегании грунтовых вод. Намечают последовательность и направление наземных маршрутов для поисков месторождений строительных материалов и резервов грунта.

Однако основной объем разведочных инженерно-геологических и инженерно-гидрогеологических изысканий выполняют бурением скважин. Для этого используют самоходные и переносные станки механического бурения. Перечень рекомендуемых станков для проходки скважин в зависимости от преобладающих грунтов приведен в табл. 6.2.

Таблица 6.2.

Станки для механического бурения

Глубина скважин, м Скальные грунты Крупнообломочные и песчаные грунты Глинистые грунты Мерзлые грунты
До 10 УКБ-12/25 АВБ-2М, М-1, УРБ-1, УРБ-М, БУКС-ЛГТ Булиз-15,М-1,АВБ-2М, БУКС-ЛГТ Булиз-15, М-1, М-1, АВБ-2М
От 10 до 30 м УКБ-12/25, УГБ-1ВС, БСК-2М-100, БЕКГМ-1-100 АВБ-2М, УГБ-1ВС, БУКС-ЛГТ АВБ-2М, УГБ-1ВС, БУКС-ЛГТ, Булиз-15 УГБ-1ВС
От 30 до 100м УГБ-1ВС, АВБ-Т, БСК-2М-100 УГБ-1ВС, УРБ-2А2, АВБ-ТМ УГБ-1ВС, АВБ-ТМ, АВБ-2М УГБ-1ВС, АВБ-М
Свыше 100 м УРБ-3АМ, УРБ-3А3 УРБ-3АМ УРБ-3АМ, УРБ-2А2 УРБ-3АМ

Переносные станки:

УКБ-12/25 и М-1 - легкие (массой до 20 кг), обеспечивают начальный диаметр скважин 100 мм, используемые способы бурения - колонковый, шнековый;

БСК-2М-100 и БЕКГМ-1-100 - тяжелые (масса 400-500 кг).

Прицепные станки:

Станок БУКС-ЛГТ - легкий, начальный диаметр устраиваемой скважины 150 мм, применяемый способ бурения - ударно-канатный.

Самоходные станки:

это станки на базе автомобилей ГАЗ-66 и ЗИЛ-131, способы бурения - ударно-канатный и колонковый, начальный диаметр скважин 300 мм (исключение составляют станок АВБ-2М с вибрационным способом бурения и станок Булиз-15 на базе ГАЗ-69 с комбинированным способом бурения и начальным диаметром устраиваемых скважин 150 мм).

Для испытаний грунтов в условиях естественного залегания применяют пенетрометры динамического и статического типа, установки лопастного типа, проводят штамповые и прессиометрические испытания грунтов в буровых скважинах.

Динамическое зондирование позволяет определять сопротивление грунта зонду, используемое при расчете глубины забивки свай, а также в первом приближении плотность грунта, удельное давление на глинистый грунт, угол внутреннего трения и модуль деформации. Установки динамического зондирования, предусматривающие автоматическое сбрасывание молота, приведены в табл. 6.3.

Таблица 6.3.

Установки динамического зондирования

Тип установки Глубина зондирования, м Тип оборудования Масса молота, кг Высота падения молота, см Мощность двигателя. кВт Масса установки, кг
УБП-15М   Основное     5,8  
НАП-10   Основное     Привод от автомобиля  
АОЗ-10-15   Основное     5,8  
АДЗ-2Т-25   Тяжелое     5,8  
АДЗ-ЗЛ-8   Легкое     2,3  

ФГУП «Росстройизыскания» внедрило в производство зондировочно-буровую геотехническую установку, которая может бурить вертикально, наклонно, с использованием практически всех видов бурения. Позволяет вести статическое зондирование с усилием до 15 и даже при необходимости 20 тонн. Совмещенное бурение со статическим зондированием позволяет проходить те слои, которые не поддаются статическому зондированию, то есть переходить на буровое зондирование, впервые примененное в нашей стране. Смысл бурового зондирования заключается в том, что установка, снабженная датчиками, позволяет измерять все основные параметры режима бурения по глубине, то есть фактически строить график затрат энергии.

Радиоуправляемая самоходная многоцелевая буровая установка GM-50GT (производство Финляндии) производит буровые работы колонковым, ударно-канатным и шнековым способами, снабжена зондами для статического и динамического зондирования. Установка позволяет считать число полуоборотов на каждые 5 см заглубления зонда. Диаметр бурения 89 мм, глубина бурения составляет до 20 м, глубина проведения динамического зондирования - 25 м, статического зондирования - 5-6 м. Установка оснащена бортовым компьютером Geoprinter, который сохраняет результаты зондирования и после проведения работ выдает лобовое сопротивление, боковое трение и поровое давление в грунте.

Динамический пенетрометр PDG 1000 фирмы VECTRA (Франция) монтируется на прицепе. Вбивание конической иглы производится с помощью сил гравитации. Откалиброванная масса ударяет с регулярным интервалом по наковальне, связанной со стержнем держателя иглы. Погружение иглы в исследуемый грунт измеряется датчиком перемещения, установленным наверху стойки. Датчик давления фиксирует величину давления в гидравлической цепи в момент поднятия молотка после каждого удара. Установка имеет диаграмму сопротивления при вбивании калибровочной иглы под стандартным нагружением. Определено соотношение между плотностью грунта и сопротивлением вбиванию для всех видов и составов грунтов.

Метод статического зондирования позволяет получить сопротивление грунта, используемое при расчете забивки свай, а также приблизительные плотность грунта, угол внутреннего трения, модуль деформации и удельное давление на глинистые грунты. Метод основан на том, что грунты в зависимости от их структурных особенностей, состава и строения оказывают различное сопротивление прониканию зонда с рабочим наконечником, имеющим обычно форму конуса. Из установок статического зондирования наиболее распространены следующие: С-979, С-832, УСЗК-3, УСЗК-73В, СП-59 и ПИКА-9 (пенетрометроприставка к УГБ-1ВС), которые позволяют выполнить зондирование на глубину до 15-20 м, имеют массу 0,3-2,6 кг. В качестве регистрирующей аппаратуры используются манометры, динамометры, самописцы, манометры-тензодатчики, измерительные головки и т.д.

Для болотных грунтов следует применять пенетрометр П-4 конструкции Тверского государственного технического университета (ТГТУ). Пенетрометр П-4 включает помимо наконечника стержень для оценки трения штанг о грунт, соединительные штанги, упор и рукоятку, витую пружину и индикатор часового типа.

При задавливании конуса в грунт оператор на определенных глубинах фиксирует показания индикатора. В качестве показателя, характеризующего зондирование, вычисляется удельное сопротивление зондированию и строится график изменения по глубине усилия задавливания, а также удельного сопротивления зондированию.

При испытании слабых грунтов на сдвиг в условиях природного залегания используют приборы лопастного типа: сдвигомер-крыльчатка конструкции ТГТУ СК-8, крыльчатка ЦНИИС и сдвигомер-крыльчатка БелдорНИИ.

Испытание заключается в измерении максимального крутящего момента, возникающего при срезе грунта во время вращения в нем крестообразной лопасти. При повороте следят за стрелкой индикатора до тех пор, пока не прекратится ее отклонение и не начнется спад.

Отличительной особенностью сдвигомера-крыльчатки БелдорНИИ является наличие динамометрического устройства и двух крыльчаток с различными диаметрами. Крыльчатку ЦНИИС (комплектуется крыльчатками четырех размеров) используют, когда верхние слои слабой толщи осушены и уплотнены, поэтому при ее применении необходимо предварительное бурение.

ФГУП «Росстройизыскания» разработаны автоматизированные компрессионные сдвиговые приборы «Питон-К», «Питон-В», «Пласт-К», «Пласт-С», которые представляют результаты испытаний в цифровом виде.

Для выполнения гидрогеологических изысканий может быть использован многоканальный датчик «Madosolo» французской фирмы «IRIS INSTRUMENTS», предназначенный для контроля уровня грунтовых вод, как при единичных, так и стационарных наблюдениях. Прибор принимает электрические сигналы с сенсора, непосредственно производимые им самим. Временной интервал снятия показаний программируется от 1 мин до 24 час. Зафиксированные от 13 000 до 28 000 результаты измерений заносятся в электронную память прибора и преобразуются с помощью компьютера в обычные физические величины. Условия работы прибора: температура от -25° до +70°С при влажности от 0 до 100 %, точность измерений 0,2 %.

Помимо буровых и шурфовых работ, пенетрометров и установок лопастного типа используют геофизические методы исследований. Их стали широко применять при системном автоматизированном проектировании. Эти методы позволяют собирать инженерно-геологическую информацию в пределах широкой полосы варьирования трассы для последующего построения цифровых и математических моделей инженерно-геологического и гидрогеологического строения местности. Геофизические методы изысканий описаны в разделе 6.7.

Цель инженерно-геологических изысканий - сбор сведений, характеризующих инженерно-геологические условия полосы варьирования в объеме необходимом и достаточном для их оценки и выбора рекомендуемого направления трассы.

Материалы инженерно-геологических исследований территории должны обеспечивать составление карт инженерно-геологического районирования в масштабах 1:50 000-1:20 0000 на основе использования имеющихся геологических, гидрогеологических и других карт соответствующего масштаба.

При недостаточности собранных материалов изысканий прошлых лет, материалов аэрокосмических съемок и других данных следует выполнять рекогносцировочные обследования или инженерно-геологические съемки в соответствии с техническим заданием заказчика.

Разработку документации на строительство осуществляют в три этапа:

определение цели инвестирования;

разработка ходатайства (декларации) о намерениях;

разработка обоснований инвестиций в строительство.

На этапе определения цели инвестирования материалы инженерно-геологических изысканий должны обеспечивать оценку инженерно-геологических условий полосы варьирования трассы, выбора направления автомобильных дорог с учетом необходимости развития инженерной защиты участков автомобильной дороги от вредных природных и техногенных процессов.

При инженерно-геологическом дешифрировании аэрофотоснимков устанавливают типы геоморфологических элементов, контуры генетических и литологических разновидностей грунтов, характер современных физико-геологических явлений, общие инженерно-геологические условия. Выявляют перспективность и направления наземных маршрутов для поиска месторождений строительных материалов и резервов грунта.

Для дешифрирования грунтов и гидрогеологических условий в залесенных районах применяют спектрозональные цветные аэросъемки. Спектрозональные аэрофотосъемки помогают установить необходимые для дешифрирования грунтов геоботанические признаки.

Материалы аэрокосмических съемок используют для объектов протяженностью более 100 км.

При недостаточном объеме имеющихся материалов, а также в связи с необходимостью их обновления могут быть выполнены рекогносцировочные обследования местности.

В процессе инженерно-геологической рекогносцировки производят визуальный осмотр местности, уточняют данные дешифрирования и предварительную инженерно-геологическую карту в отдельных ключевых местах, отмечают границы неблагоприятных в инженерно-геологическом отношении участков, а также границы месторождений и резервов, выявленных по предварительным данным. Выявляют характерные участки для подробных полевых исследований.

По материалам инженерно-геологических изысканий на этапе определения целей инвестирования составляют карты инженерно-геологического районирования территории и рекомендации по выбору района размещения объекта инвестирования.

На этапе разработки ходатайства (декларации) о намерениях с учетом решений, принятых в программах и схемах развития регионов, производят оценку возможности инвестирования в выбранном районе с учетом затрат на инженерную защиту автомобильной дороги и природоохранные мероприятия.

По материалам инженерно-геологических изысканий на этапе разработки ходатайства о намерениях составляют инженерно-геологическую карту в требуемом масштабе и заключение об инженерно-геологических условиях района предполагаемого размещения объекта строительства, включающее данные о необходимости инженерной защиты дороги, условиях природопользования и необходимости природоохранных мероприятий.

Карты должны отражать инженерно-геологические условия на необходимую для проектирования глубину, быть легко читаемыми и понятными для проектировщиков. При этом грунтово-гидрогеологические условия должны быть представлены не только в виде инженерно-геологических карт, но и в виде цифровых моделей инженерно-геологического строения местности.

При изысканиях для разработки обоснования инвестиций (ОИ) в строительство автомобильных дорог точки наблюдения, в том числе горные выработки, следует размещать в пределах полосы варьирования трассы вдоль ее оси, по поперечникам, в местах переходов через водотоки и пересечений других сооружений, а также на характерных элементах рельефа (склоны, борта оврагов, тальвеги, заболоченные участки и др.). Количество точек наблюдений устанавливают, исходя из табл. 6.4, в соответствии с СП 11-105-97.

Таблица 6.4.

Число точек наблюдений при выполнении инженерно-геологических съемок

Категория сложности инженерно-геологических условий Количество точек наблюдений на 1 кв. км инженерно-геологической съемки (в числителе), в том числе горных выработок (в знаменателе) Масштаб инженерно-геологической съемки
1:200000 1:100000 1:50000 1:25000 1:10000
I 0,5/0,15 1/0,35 2,3/0,9 6/2,4 25/9
II 0,6/0,18 1,5/0,5 3/ 1,4 9/3 30/11
III 1,1/0,35 2,2/0,7 5,3/2 12/4 40/16

На участках развития геологических и инженерно-геологических процессов, распространения специфических грунтов, а также в сложных инженерно-геологических условиях необходимо располагать поперечники из трех-пяти выработок и увеличивать ширину полосы инженерно-геологической съемки.

Полевые методы исследования грунтов следует использовать для оценки физико-механических свойств грунтов в массиве, установления характера пространственной изменчивости свойств грунтов, выявления, уточнения и прослеживания границ литологических тел (пластов, прослоев, линз) и других целей. Для этого рекомендуется применение зондирования, прессиометрии, а также выполнения геофизических исследований.

Количество точек статического и динамического зондирования должно быть не менее шести на каждом геоморфологическом элементе.

Для изысканий грунтово-гидрологических условий полосы варьирования автомобильных дорог проф. А.М. Кулижниковым рекомендована следующая технология выполнения работ с использованием георадаров (патент № 2109872 РФ).

Аналитически обоснованные границы полосы варьирования трассы заносят в память компьютера, при этом всю полосу варьирования разбивают на зоны с различными грунтово-гидрологическими условиями (например, болотистые, оползневые, карстовые и просадочные участки, участки с обеспеченными и необеспеченными поверхностными стоками и т.д.). Координаты границ зон с различными грунтово-гидрологическими условиями также заносят в память компьютера. В каждой зоне устанавливают расстояние между маршрутами движения вездехода, по которым определяют грунтово-гидрологические разрезы. Из рассмотрения в ходе последующих изысканий отбрасываются участки местности, прилегающие к начальной и конечной точкам трассы и образующиеся границей полосы варьирования и прямыми, направленными под углами 35-55° к воздушной линии. Задают начальное направление движения вездехода в зависимости от рельефа и ситуации, например под углом 45° вправо к направлению воздушной линии между начальной и конечной точками трассы.

Вездеход с георадаром движется по начальному направлению к правой границе полосы варьирования трассы, при этом пересекая по возможности самые высокие и низкие места рельефа, обходя встречающиеся деревья и другие ситуационные препятствия. По маршруту движения вездехода на экране дисплея просматривается и записывается на магнитные носители геологический разрез местности, на котором фиксируется положение уровня грунтовых вод. При движении вездехода его положение в декартовой системе координат определяют и заносят на магнитные носители с использованием систем спутниковой навигации GPS (например, американской «NAVSTAR» или российской «ГЛОНАСС») по установленному на вездеходе многоканальному приемнику. Например, приемник ASHTECH Р-12 определяет геодезические координаты с точностью до 5 мм и обладает значительной помехоустойчивостью. Потребляемая приемником мощность менее 12 Вт, питание осуществляется от сети постоянного тока 10-36 В. Помимо маршрутного GPS-приемника в середине полосы варьирования трассы устанавливают базовую станцию DGPS. Базовую станцию устанавливают на открытой возвышающейся над окружающей местностью площадке.

При достижении правой границы полосы варьирования трассы вездеход проходит вдоль границы параллельно воздушной линии, связывающей начальный и конечный пункты трассы.

Далее маршрут следования вездехода проходит через экстремальные точки рельефа в обход препятствий к левой границе полосы варьирования трассы с учетом принятого расстояния между грунтово-гидрологическими разрезами. Вездеход может осуществлять движение по интересующим участкам местности с возможностью маневрирования. При этом контролируют переходы из одной зоны грунтово-гидрологических условий в другую. Достигнув левой границы полосы варьирования, вездеход проходит параллельно воздушной линии и вновь направляется к правой границе полосы варьирования, и так далее до выхода в конечную точку зоны варьирования.

Перед началом, в процессе или после завершения грунтово-гидрогеологических геофизических изысканий выполняют контрольное бурение, по которому калибруют волновую картину геологического разреза для уменьшения погрешности определения залегания кровли и подошвы грунтовых напластований и положения уровня грунтовых вод.

По результатам полевых работ создают интегрированную пространственную математическую модель рельефа, геологии и гидрогеологии местности.

В местах индивидуального проектирования земляного полотна инженерно-геологические работы выполняют по особым программам. В состав работ включают крупномасштабную инженерно-геологическую съемку, горно-буровые работы, геофизическую разведку, полевые методы испытания грунтов. В местах ожидаемого строительства мостов и путепроводов для уточнения типов фундаментов закладывают выработки, применяют геофизические методы разведки и, в частности, пенетрацию.

Гидрогеологические исследования выполняют для ориентировочной оценки водопроницаемости грунтов - коэффициента фильтрации. Допускается применение экспресс-откачек в процессе или после бурения скважин. Количество опытов для водоносного горизонта следует принимать не менее шести.

Из каждого водоносного горизонта в пределах взаимодействия автомобильной дороги с геологической средой следует отбирать не менее трех проб воды на стандартный химический анализ.

Лабораторные методы определения показателей физико-механических свойств грунтов следует выполнять для классификации грунтов в соответствии с ГОСТ 25100-95 (Грунты. Классификация), количественной оценки их состава и физических характеристик согласно ГОСТ 5180-84 (Грунты. Методы лабораторного определения физических характеристик). Количество отобранных в процессе изысканий образцов грунта должно быть не менее шести для каждого основного литологического пласта.

При необходимости оценку прочностных и деформационных свойств грунтов осуществляют в соответствии с региональными таблицами характеристик грунтов, свойственных для исследуемого района, или по показателям физических характеристик в соответствии с требованиями СНиП 2.02.01-83.

Характеристику состава и состояния крупнообломочных и скальных грунтов определяют по результатам их визуального описания, с использованием справочных табличных данных, а также по результатам геофизических исследований.

При определении физико-механических свойств грунтов следует также использовать метод инженерно-геологических аналогий.

Прогноз изменений инженерно-геологических и гидрогеологических условий при изысканиях следует осуществлять, как правило, в форме качественного прогноза с использованием сравнительно-геологических методов (природных аналогов и инженерно-геологических аналогий). Прогноз следует осуществлять на основе обобщения материалов изысканий прошлых лет, материалов аэрокосмических съемок и данных инженерно-геологического картирования исследуемой территории с учетом результатов рекогносцировочного обследования.

В результате прогноза изменений инженерно-геологических условий в районе изысканий устанавливают:

возможность возникновения и развития опасных геологических процессов и явлений определенного вида и масштаба;

направленность и характер возможных изменений состава и состояния грунтов под воздействием природных и техногенных факторов и проявления особых свойств грунтов и их ориентировочные характеристики, а также категорию опасности природных процессов в соответствии со СНиП 22-01-95 и тенденцию изменения отдельных факторов инженерно-геологических условий.

Состав и содержание технического отчета о результатах инженерно-геологических изысканий должен соответствовать требованиям пп. 6.3-6.5 СНиП 11-02-96 и СП 11-105-97. В заключительной части отчета должны быть сформулированы рекомендации и предложения по проведению последующих изысканий.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1095; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.