Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геофизические методы инженерно-геологических изысканий




Выбор метода геофизических исследований и их комплектование следует проводить в зависимости от решаемых задач и конкретных инженерно-геологических условий в соответствии с табл. 6.12. согласно СП 11-105-97. Геофизические методы исследований оказываются особенно эффективными при изучении неоднородных геологических объектов, когда их геофизические характеристики существенно отличаются друг от друга.

Таблица 6.12.

Методы геофизических исследований

Задачи исследований Геофизические методы
Основные Вспомогательные
Определение геологического строения массива
Рельеф кровли скальных и мерзлых грунтов, мощность нескальных и талых перекрывающихся грунтов Электроразведка методами электропрофилирования (ЭП) и вертикального электрического зондирования по методу кажущихся сопротивлений (ВЭЗ); сейсморазведка методом преломленных (МПВ) и отраженных (МОГВ) волн ВЭЗ по методу двух составляющих (ВЭЗ МДС); частотное электромагнитное зондирование (ЧЭМЗ); дирольно-электромагнитное профилирование (ДЭМП); метод Отраженных волн (MOB); гравиразведка
Расчленение разреза. Установление границ между слоями различного литологического состава и состояния в скальных и дисперсных породах ВЭЗ; МПВ; различные виды каротажа - акустический, электрический, радиоизотопный ВЭЗ МДС; ВЭЗ по методу вызванных потенциалов (ВЭЗ ВП); ЧЭМЗ; вертикальное сейсмическое профилирование (ВСП); непрерывное сейсмоакустическое профилирование на акваториях
Местоположение, глубина залегания и форма локальных неоднородностей
Зоны трещиноватости и тектонических нарушений, оценки их современной активности ВЭЗ; ВЭЗ МДС; круговое вертикальное зондирование (ВЭЗ); метод естественного поля (ПС); МВП; МОГТ; ВСП; расходометрия; различные виды каротажа; радиокип; газовоэманационная съемка; георадиолокация ВЭЗ ВП; радиоволновое просвечивание; ДЭМП; магниторазведка; регистрация естественного импульсного - электромагнитного поля земли (ЕИЭМПЗ)
Карстовые полости и подземные выработки ЭП; ВЭЗ; ВЭЗ ВСП; расходометрия, резистивиметрия, газовоэманационная съемка МОГТ; сейсмоакустическое просвечивание; радиоволновое просвечивание; гравиразведка; георадиолокация
Погребенные останцы и локальные переуглубления в скальном основании МОГТ; ВЭЗ; ВЭЗ МДС; ЭП; гравиразведка, магниторазведка; газовоэманационная съемка ДЭМП; сейсмическое просвечивание; георадиолокация
Льды и сильнольдистые грунты ЭП; ВЭЗ; ВЭЗ МДС; МПВ; различные виды каротажа ВЭЗ ВП; ДЭМП; ЧЭМЗ; микромагнитная съемка, гравиразведка
Межмерзлотные воды и талики ЭП; ВЭЗ МДС; термометрия ПС; ВЭЗ ВП
Изучение гидрогеологических условий
Глубина залегания уровня подземных вод МПВ; ВЭЗ ВЭЗВП
Глубина залегания, мощность линз соленых и пресных вод ЭП; ЭП МДС; ВЭЗ; резистивиметрия ВЭЗ МДС; ВЭЗ ВП; ЧЭМЗ; расходометрия
Динамика уровня и температура подземных вод Стационарные наблюдения ВЭЗ; МПВ; нейтрон-нейтронный каротаж (НН); термометрия  
Направление, скорость движения, места разгрузки подземных вод, изменение их состава Резистивиметрия; расходометрия; метод заряженного тела (МЗТ); ПС; ВЭЗ Термометрия; спектрометрия
Загрязнение подземных вод ВЭЗ; резистометрия ПС
Изучение состава, состояния и свойств грунтов
Скальные: пористость и трещиноватость, статический модуль упругости, модуль деформации, временное сопротивление одноосному сжатию, коэффициент отпора, напряженное состояние Различные виды каротажа, МПВ; сейсмоакустическое просвечивание; ВСП; лабораторные измерения удельных электрических сопротивлений (УЭС) и скоростей упругих волн ВЭЗ
Песчаные, глинистые и пылеватые, крупнообломочные: влажность, плотность, пористость, модуль деформации, угол внутреннего трения и сцепление Различные виды каротажа, ВСП МПВ; сейсмическое просвечивание; лабораторные измерения УЭС и скоростей упругих волн
Песчаные и глинистые мерзлые: влажность, льдистость, пористость, плотность, временное сопротивление одноосному сжатию Различные виды каротажа; ВСП; лабораторные измерения УЭС и скоростей упругих волн ВЭЗ; ВЭЗ МДС
Коррозийная активность грунтов и наличие блуждающих токов ВЭЗ; ЭП; ПС; лабораторные измерения плотности поляризующего тока; регистрация блуждающих токов  
Изменение напряженного состояния и уплотнения грунтов МП В; ВСП; сейсмическое просвечивание; различные виды каротажа; резистивиметрия в скважинах и водоемах; гравиметрия Регистрация естественного импульсного электромагнитного поля Земли (ЕИ-ЭМПЗ); ПС; эманационная съемка
Оползни МПВ; ЭП; ВЭЗ; различные виды каротажа ПС; режимные наблюдения акустической эмиссии; магнитные марки; эманационная съемка; ЕИЭМПЗ
Карст ВЭЗ МДС; ЭП; ПС; МПВ; ОГП; различные виды каротажа; резистивиметрия в скважинах и водоемах; гравиметрия ВЭЗ; ВЭЗ ВП; МЗТ; эманационная съемка
Изменение мощности слоя оттаивания, температуры и свойств мерзлых грунтов ВЭЗ; ЭП; МПВ; ВСП; различные виды каротажа ПС;ЧЭМЗ
Сейсмическое микрорайонирование территории МПВ; ВСП; гамма-гамма каротаж (ГГ); регистрация слабых землетрясений, взрывов Регистрация сильных землетрясений, регистрация микросейсмичности, определение характеристик затухания и поглощения сейсмических волн в грунтах

Для обеспечения достоверности и точности интерпретации результатов геофизических исследований измерения проводят на контрольных участках, на которых осуществляют изучение геологической среды с использованием таких работ, как бурение скважин, проходки шурфов, зондирования, с определением характеристик грунтов в полевых и лабораторных условиях.

Все геофизические методы, применяемые в дорожном строительстве, можно разделить на следующие: сейсмоакустические, электроразведочные, радиолокационные, радиоизотопные и другие.

Сейсмоакустические методы основаны на изучении распространения в различных грунтах упругих волн, вызванных взрывами или ударами. Различные грунты характеризуются разной скоростью прохождения сейсмических волн, зависящей от состава, пористости, влажности, структуры и напряженно-деформированного состояния грунта.

Принцип действия метода заключается в следующем: на поверхности земли создается искусственное землетрясение (удар). Сейсмические волны, проходя через разные слои по глубине, испытывают отражение и преломление. Часть падающей волны отражается от отражающей границы и возвращается к дневной поверхности. Фиксируя время t, прошедшее с момента возбуждения упругого сигнала до момента возвращения полезной отраженной волны, и, зная скорость распространения сейсмических волн в грунте и, легко рассчитать глубину залегания опорного горизонта Н:Н = u´t/2. Важной характеристикой упругих свойств грунтов является акустическая жесткость g, представляющая собой произведение скорости распространения сейсмических волн в породе u на ее плотность r, то есть g = u´r. Отраженные сейсмические волны возникают только на тех границах, которые различаются по акустической жесткости, т.е. при условии, что u1´r1 # u2´r2.

Для грунтов, расположенных выше уровня грунтовых вод, скорость прохождения упругих волн не превышает 1200 м/с (почвенные слои 300-900 м/с, плотные глины 600-1200 м/с). Ниже уровня грунтовых вод скорость выше (крупные пески 1000-2000 м/с, глины 1200-1500 м/с и гравий 1500-1800 м/с).

Из оборудования для сейсморазведки наибольший интерес представляет полностью автоматизированная 96-канальная сейсмическая станция "Горизонт", которая позволяет фиксировать информацию в цифровом виде на магнитном носителе. Успешно применяют и передвижную сейсмическую станцию "Поиск-1" на автомобиле ГАЗ-69. ФГУП «Росстройизыскания» успешно провело испытания и подготовило к серийному выпуску сейсморазведочную станцию «Диоген-24».

Инженерная сейсморазведка изучает особенности строения самой верхней части геологического разреза от нескольких метров до глубины 50 м. В связи с чем, сейсмоакустический метод с успехом применяют для выявления оползневых массивов, при исследованиях мощности торфяных отложений и рельефа дна болота, для определения уровня грунтовых вод и обнаружения карстовых полостей, а также для установления мощности многолетнемерзлых грунтов.

Однако применение сейсмоакустического метода для линейных изысканий геологических и гидрогеологических условий трасс автомобильных дорог малоэффективно из-за низкой его производительности, в то время как для небольших и сложных участков трасс (карстовые, оползневые участки и т.д.), а также территории (например, под карьеры, производственные базы или транспортные развязки) площадью 1-2 км2 сейсмоакустический метод может оказаться незаменимым.

Электроразведка. Суть методов электроразведки заключается в том, что а геологической среде с помощью питающих электродов возбуждается постоянное или низкочастотное переменное поле, а с помощью приемных электродов измеряют разность потенциалов в грунтовой среде между приемными электродами. По разности потенциалов, току, размерам установки электродов вычисляют на соответствующей глубине сопротивление грунта, по которому судят и о его виде. Как правило, удельные сопротивления различных видов грунтов сильно отличаются (табл. 6.13), что и позволяет по результатам измерений определять вид грунта.

Таблица 6.13.

Удельные сопротивления различных видов грунтов

Вид грунта или горной породы Удельное сопротивление, Ом/м
Глины 0,1-10
Суглинки 10-100
Пески водонасыщенные 100-1000
Пески засоленные 0,1-10
Известняки, песчаники, глинистые сланцы 10-1000
Аргиллиты, алевролиты, мергели 10-100
Граниты, сиениты, диабазы, базальты 100-100000

В зависимости от схемы размещения питающих и приемных электродов различают электропрофилирование (изменение геологических слоев по длине трассы в пределах изучаемой толщи) или электрозондирование (геологический разрез по глубине) грунтов.

При изысканиях трасс автомобильных дорог прибегают к методу электрического зондирования. Электрозондирование проводят через 100-300 м по трассе с разносами электродов не свыше 100 м.

Из всех рассмотренных схем электроразведки методом электропрофилирования с заземленными установками (комбинированное, дипольное, симметричное, электропрофилирование методом срединного градиента и т. д.) наиболее производительным и эффективным для изыскания границ участков с различными гидрогеологическими условиями является метод срединного градиента, который позволяет охватывать при измерениях большие площади без переноса питающих электродов. При электропрофилировании методом срединного градиента следует принимать разнос питающих электродов в пределах АВ = 50-100 м, а приемных MN = 1-3 м, что позволяет фиксировать удельное сопротивление грунта до глубины 5-10 м, при выполнении же изыскательских работ в зимний период возникают сложности с забивкой электродов, поэтому в этом случае целесообразно применять методику бесконтактного измерения электрического поля с незаземленной полупетлей или прямоугольной петлей. Для бесконтактных методов электроразведки целесообразно использовать аппаратуру ЭРА-625. Область применения бесконтактного метода такая же, как и у контактного метода срединного градиента.

Тем не менее и электроразведка может быть рационально использована на участках местности с небольшой площадью до 1-2 км2 при изысканиях границ карьеров дорожно-строительных материалов, карстовых полостей, линз вечномерзлых грунтов, границ болотистых участков и обследовании площадок под производственные базы. При этом сначала методом электропрофилирования определяют в плане либо контуры полезной толщи в карьерах, либо границы смены подстилающих грунтов, а затем методом электрозондирования устанавливают геологические сечения в интересующих точках и разрезах.

Из электроразведочных приборов наибольший интерес представляют: автокомпенсатор электроразведочный АЭ-72 (электрозондирование и электропрофилирование при постоянном токе), аппаратура низкой частоты АНЧ-3 (для низкочастотного электрозондирования и электропрофилирования) и электроразведочная станция "Енисей" на автомобиле УАЗ. В полевых условиях аппаратура низкой частоты АНЧ-3, состоящая из стационарного и переносного генераторов, а также избирательного микровольтметра, показала себя достаточно стабильной к колебаниям влажности и температуры.

Из зарубежного опыта можно отметить выполнение электроразведочных работ с помощью переносного резистометра SYSCAL R1 (табл. 6.14) французской фирмы IRIS INSTRUMENTS. Французский резистомер положительно отличает возможность хранения сведений непосредственно в памяти прибора, а встроенная в нем подзаряжающаяся аккумуляторная батарея позволяет на протяжении нескольких дней производить до 1000 считываний по 10 сек каждое.

Таблица 6.14.

Электроразведочные аппараты низкой частоты

Техническая характеристика прибора Наименование аппаратуры
АНЧ-3 SYSCAL R1
Рабочая частота, Гц Максимальная мощность генератора, Вт: стационарного переносного Максимальный ток генератора, А: стационарного переносного Максимальное напряжение генератора, В: стационарного переносного Нестабильность фиксированного значения тока, % Измеряемое микровольтметром напряжение (разрешающая способность), мкВ Погрешность измерения напряжения, % Масса генератора, кг: стационарного переносного Масса микровольтметра, кг 4,88     0,1   10-30000   3,5 -   -   -   - 200-400   - 9,5 -

Радиолокационные методы. Суть радиолокационных методов (чаще всего применяют - подповерхностная радиолокация) заключается в том, что радиолокационное устройство (георадар) при помощи антенны излучает электромагнитные волны, которые, распространяясь в грунте, отражаются от многочисленных границ пород с различными электрофизическими свойствами. Определенная часть энергии электромагнитной волны отражается, остальная часть, преломляясь, распространяется глубже до следующего отражающего горизонта, где происходит новый процесс отражения и преломления. Через некоторые промежутки времени начинают приходить сигналы, отраженные от границ геологических слоев. По скорости распространения сигнала и устанавливают тип грунтов, глубину заложения тех или иных геологических слоев и фиксируют глубину залегания уровня грунтовых вод.

Сам георадар состоит из антенно-передающего, антенно-приемного модулей, блоков управления, отображения и регистрации. Антенно-передающие и антенно-приемные модули в процессе работы устанавливают на устройства передвижения и перемешаются по поверхности грунта по маршруту движения транспортного средства. Модули соединены с блоками управления, отображения и регистрации.

Вычислительный комплекс георадара построен на базе персонального компьютера. Регистрация информации осуществляется на магнитном носителе, визуальное отображение - на экране монитора с цветной индикацией радарограммы.

Ведущими зарубежными фирмами, занимающимися производством георадаров, являются GSSI (Нью Гемпшир, США), Sensor and Software Inc. (Канада), Era Technology (Великобритания), Mala (Швеция), Radar Systems (Латвия), OYO софогаПоп (Zondas) и Geozondas (Литва).

Компания GSSI выпускает георадары с маркировкой Sir systems с модификациями Sir systems -2, -2Р, -3, 3R, 3I, -10А, -10Н, -10В, 2000 и т.д.

Компания Sensor and Software производит новейшие георадарные системы ЕККО и Noggin различных модификаций.

Компания Radar Systems производит георадары «Зонд» различных модификаций. В настоящее время она выпускает георадар «Зонд-12С» с набором различных антенных блоков.

В России георадары «ЗОНД», «ГЕОН» и «ОКО» производит ООО «Логические системы» совместно с НИИ приборостроения (г. Жуковский), георадары «Грот» - НПО «Инфизприбор» (г. Троицк), георадары «Лоза» - институт механизированного инструмента ВНИИСМИ и георадары «Локас-2» - Правдинский завод радиорелейной аппаратуры.

Технические характеристики георадаров «ОКО», разработчики ООО «Логические системы» и НИИ приборостроения г. Жуковский сведены в табл. 6.15, георадаров «Грот» - в табл. 6.16, георадаров «Sirsystems» - в табл. 6.17, георадара «Зонд-12С» - табл. 6.18.

Таблица 6.15.

Технические характеристики георадаров «ОКО»

Антенный блок Параметры георадара
Центральная частота, МГц Глубина зондирования, м Разрешающая способность, м
АБД 25-100   0,5-2,0
АБ-150     0,35
АБ-250     0,25
АБ-400     0,17
АБ-500     0,12
АБ-700     0,1
АБ-900     0,07
АБ-1200     0,05

Таблица 6.16.

Технические характеристики георадаров «Грот»

Характеристики среды Глубина зондирования, м Разрешение по глубине, м Разрешение по горизонтали, м
Пресноводный лед   0,1 0,5
Известняк >60 0,1 0,5
Сухой песок >50 0,1 0.5
Влажный песок   0,1 0.5
Глина   0,1 0.5

Таблица 6.17.

Технические характеристики георадаров «Sir systems»

Модель Глубина зондирования, м Центральная частота, МГц Габариты, см Вес, кг
  до 0.50   3,8´10´16,5 1,8
  до 1   60´22´19 5,0
3101D до 1   8´18´33 2,3
  до 3   30´30´20 4,6
  до 9   60´60´30  
3207АР до 15   25´96´200  
Suberho-70 до 25   120´15´26  
Suberho-40 до 35   200´15´26  
3200MLF до 40 16,20,35,40,80 120-600 17-25

Таблица 6.18.

Технические характеристики георадаров «Зонд-12С»

Антенная система Размеры, см Вес, кг
2000 МГц 27´13´13 1,5
1000 МГц 30´20´17 4,0
900 МГц 43´22´4  
500 МГц 69´32´4  
300 МГц 98´52´4  
28-150 - 3-6

Достоинствами применения георадаров в инженерно-геологических изысканиях являются: универсальность, позволяющая определять георадарами загрязнение почв, поиск карстовых воронок и пустот под автомобильными и железными дорогами, обнаружение пластиковых и металлических труб, кабелей и других объектов коммунального хозяйства, определение утечек из нефте- и водопроводов, установление границ залежей полезных ископаемых, определение мест захоронения экологически опасных отходов и т.д.;

высокая производительность работ, достигающая в трудных условиях грунтово-гидрогеологических изысканий автомобильных дорог (залесенные участки, пересеченная местность и т.д.) до 3 км в смену, а в легких условиях (открытая местность, равнинные участки и т.д.) до 30 км в смену;

практически доступный диапазон частот 15-2500 МГц соответственно для глубин зондирования 1-40 м, незначительная потребляемая мощность 4-36 Вт;

небольшая численность обслуживающего персонала, составляющая в зависимости от условий местности 1-3 человек;

большая разрешающая способность (фиксируется малая мощность геологических слоев толщиной 4-8 см) и малая погрешность при выполнении измерений, не превышающая 3%;

возможность применения георадаров как в зимнее, так и в летнее время практически при любых погодно-климатических условиях (диапазон температур от -30 до +50 °С), на любых грунтах (ледники, торфы, пески, глины и т.д.);

малая масса и относительно небольшие габариты приборов, которые обусловливают большую маневренность в случае использования георадаров при ручной транспортировке, а также совместно с вездеходами или малогабаритными автомобилями;

представление полученной информации в цифровом (электронном) виде.

Метод подповерхностной радиолокации является наиболее приемлемым для геологической и гидрологической разведки трасс автомобильных дорог, но в то же время он может быть использован и на небольших территориях для обследований точечных объектов.

Радиоизотопные методы. Принцип действия радиоизотопных экспресс-методов заключается в излучении на заданных грунтовых горизонтах быстрых нейтронов или гамма-квантов и регистрации потоков медленных нейтронов или рассеянных гамма-квантов, образующихся в результате взаимодействия с электронами атомов вещества среды.

Радиоизотопные приборы позволяют определять на различных глубинах изменение влажности (например, поверхностно-глубинный влагомер ВПГР-1) и плотности (например, поверхностно-глубинный плотномер ППГР-1) песчаных и глинистых грунтов в полевых условиях, а также измерять одновременно плотность и влажность грунтов (например, влагоплотномер РВПП-1).

Работа ВГПР-1 основана на зависимости потока медленных нейтронов от объемного содержания в почвах и грунтах водорода, входящего преимущественно в состав воды. При этом поток медленных нейтронов является результатом упругого рассеяния потока быстрых нейтронов ядрами водорода контролируемой среды. В качестве источника быстрых нейтронов используется плутониево-бериллевый источник, а детектора медленных нейтронов - высокоэффективный гелиевый газоразрядный счетчик. Переход от количества зарегистрированных в единицу времени электрических импульсов к влажности контролируемой среды осуществляется при помощи градуировочного графика.

Основные технические характеристики нейтронных влагомеров приведены в табл. 6.19.

Таблица 6.19.

Технические характеристики нейтронных влагомеров

Тип влагомера Основная погрешность прибора, % объемной влажности Схема измерений
ВПГР-1 1-100 Не более 2,5 % (в диапазоне 1-50 %); не более 4,0 % (в диапазоне 50-100 %) Глубинная
УР-70 3-100 Не более 2,5 % (в диапазоне 3-50 %); Не более 4 % (в диапазоне 50-100 %) Глубинная

Работа ППГР-1 основана на зависимости потока рассеянных гамма-квантов от плотности грунта. Так вокруг источника гамма-излучения, помещенного в почву или грунт, образуется "облако" рассеянных гамма-квантов, как результат комптоновского взаимодействия с электронами атомов вещества среды, причем количественно такое взаимодействие определяется плотностью вещества контролируемой среды. В приборе использован источник гамма-излучения с изотопом цезий. В качестве детектора гамма-излучения применен монокристалл NaJ в блоке с электронным фотоумножителем. Плотность грунта определяется по количеству зарегистрированных в единицу времени электрических импульсов также при помощи градуировочного графика.

Основные технические характеристики радиоизотопных плотномеров приведены в табл. 6.20.

Таблица 6.20.

Технические характеристики радиоизотопных плотномеров

Тип плотномера Диапазон измерений, кг/м3 Основная погрешность прибора, кг/м3 Схема измерений
ППГР-1 600-2500   Глубинная, поверхностная
УР-70 800-2500   Глубинная
РПП-2 1000-25000   Поверхностная комбинированная
РПП-1 500-1500   Поверхностная

Приборы, которые позволяют измерять одновременно плотность и влажность грунтов, получили название влагоплотномеры. Их основные технические характеристики представлены в табл. 6.21.

Таблица 6.21.

Основные технические характеристики влагоплотномеров

Тип влагоплотномера Диапазон измерений Основная погрешность Схема измерений  
Влажности, % Плотности, кг/м3 Влажности, % Плотности, %, кг/м3  
Влажности Плотности  
РВПП-1 1-30 1000-2500 2,5 3,0% поверхностная Поверхностная, комбинированная  
МАК-80 0-60 1400-2300 2,0 (в диапазоне 1-25 %); 5,0 (в диапазоне 25-60 %) 50,0 кг/м3 Глубинная  
ПИКА-14 1-100 800-2400 2,5 50,0 кг/м3 Глубинная  
ЛСК-1К 2-100 800-2500 3,0 3 % при доверительной вероятности 0,95 Глубинная  

Из зарубежного оборудования известен гаммаденсиметр МС-3 фирмы VECTRA (Франция), который дает точные данные о плотности и влажности грунтов и строительных материалов на глубине 20-30 см. В прибор встроены два источника радиоактивности: цезий 137 (Cs 137) для измерения плотности и америций 241-бериллий (Am 241-Be) для измерения влажности.

Однако наряду с высокой точностью и стабильностью в работе при применении радиоизотопных приборов, сдерживающими факторами являются обязательное предварительное бурение скважин для последующего зондирования и укладки в них обсадных труб, а также невозможность выполнения измерений на глубинах ниже уровня грунтовых вод.

На основе обобщения вышеизложенного материала можно заключить, что существующие геофизические методы и аппаратура позволяют получать исходную информацию для достоверного описания геологических и гидрогеологических условий местности. При использовании современных геофизических приборов можно сократить трудозатраты на инженерные геологические и гидрогеологические изыскания (например, участка автомобильной дороги протяжением 10 км до 100 чел.-смен), но в то же время получить исходную информацию в широкой полосе варьирования трассы, значительно превышающей ширину полосы отвода.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 3330; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.