Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Устойчивость положения плиты со свободными краями при нагрузке от транспортных средств




Рассматривается дорожная или аэродромная прямоугольная плита со свободным контуром. Требуется проверить устойчивость ее положения на грунте при заданных размерах. Учитывается наиболее невыгодное расположение временной многоколесной нагрузки, когда одно колесо находится на углу плиты, а остальные колеса рассматриваемого ряда расположены у ее края (рис. 14.4).

Рис. 14.4. Расположение временной многоколесной нагрузки на плите

В учитываемом ряду колеса являются наиболее тяжелыми. Прочие ряды колес переместились на соседнюю плиту. Принимая во внимание малость деформаций жестких покрытий, данное расположение нагрузки и свободный контур плиты, заключаем, что в этом случае упругие прогибы и кривизна плиты будут сконцентрированы у загруженного края и не будут иметь существенного значения для большей части плиты, вдали от этого края. Принимается, что уплотнение грунта в основании плиты обеспечивает его работу в пределах квазилинейных упругих деформаций. При указанных условиях может быть принята линейная эпюра нормальных напряжений в подошве плиты и использованы уравнения равновесия для абсолютно жесткого тела. Из этих уравнений получится известная формула нормальных напряжений при внецентренном действии сил:

где

N - нормальная сила;

s - нормальное напряжение в некоторой точке подошвы плиты (s > 0 при сжатии);

Мх, Му - моменты относительно координатных осей х, у соответственно;

F - площадь плиты в плане;

х, у - координаты точек подошвы плиты;

Iх, Iу - моменты инерции плошали подошвы;

l, b - размеры плиты в плане;

N = R + l × b × h × g, где R - равнодействующая грузов

Рi - давление на колесо с учетом его веса и нормативных коэффициентов (динамичности, перегрузки); так как все грузы Рi равны между собой, то сила R расположена посередине ряда колес;

п - число колес в ряду;

h - толщина плиты;

g - удельный вес ее материала;

Mx = R × c 0;

c 0 - расстояние силы R до оси х;

с - расстояние между осями колес;

r - радиус отпечатка колеса.

Силы трения Тi = Рi × f, где

f - коэффициент трения шины о поверхность покрытия.

Эти силы совместно с такими же силами в подошве создают пару с моментом Тih относительно оси у. При этом

My = R (l /2 - rfh).

Условия устойчивости положения плиты:

первое условие устойчивости будет обеспечено, если по всей подошве плиты напряжения будут сжимающими (положительными) и лишь в наиболее удаленной указанной точке края, с обратной стороны от расположения нагрузки, напряжение может быть нулевым: sj ³ 0 (j - упомянутая угловая точка; ее координаты: хj = - l /2; уj = - b /2);

второе условие состоит в том, что наибольшее по абсолютному значению напряжение не должно превосходить предельного для данного вида грунта при сжатии:

(v - наиболее нагруженная угловая точка плиты; ее координаты: хv = l /2; уv = b /2; sпред - расчетное сопротивление грунта при сжатии;

по третьему условию вертикальное смещение наиболее нагруженного угла плиты:

Wv = | sv | K ³ Wпред, где

K - коэффициент постели грунта;

Wпред - нормативный предельный упругий прогиб.

При несоблюдении условий устойчивости размеры плиты требуется увеличить или устроить контурные связи плиты с соседними плитами*.

*Глава 14, подготовленная проф. Медниковым И.А., перепечатана без изменения из Справочника инженера-дорожника (Проектирование автомобильных дорог: Справочник инж.-дор. / Под. ред. д-ра техн. наук Г.А. Федотова. - М.: Транспорт, 1989. - 438 с).

Список литературы к главе 14

1. Галеркин Б.Г. Собр. соч. в 2 т. - М.: Изд-во АН СССР, 1953.

2. Медников И.А. Использование результатов натурных измерений прогибов дорожных покрытий для определения кривизны и напряжений в них и показателей жесткости основания // Прочность и ресурс автомоб. и дор. конструкций. - М., 1986. - С. 77-84. - (Сб. тр. / МАДИ).

3. Медников И.А. Эквивалентные характеристики грунта для плит на упругом основании из конечного числа неоднородных слоев // Основания, фундаменты и механика грунтов. - 1969. - № 2.

4. Бабков В.Ф., Андреев О.В. Проектирование автомобильных дорог. Ч. 1. - М.: Транспорт, 1987. - С. 350-353.

5. Медников И.А. Некоторые вопросы расчета бетонных покрытий на температуру и нагрузку:. Сб. науч. тр. / Союздорнии. - М.: Транспорт, 1966. - Вып. 7. - С. 69-79.

6. Медников И.А. К теории изгиба многослойных и армированных дорожных плит: Сб. науч. тр. / Союздорнии. - М.: Транспорт, 1966. - Вып. 7. - С. 9-10.

ГЛАВА 15. ПРОЕКТИРОВАНИЕ СИСТЕМЫ ПОВЕРХНОСТНОГО И ПОДЗЕМНОГО ДОРОЖНОГО ВОДООТВОДА




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1039; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.