Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Некоторые рекомендации к разработке региональных норм стока




Многообразие климатических, почвенно-грунтовых и гидрологических условий различных регионов не позволяет применять трафаретных решений для определения расчетных расходов при проектировании водопропускных сооружений на автомобильных дорогах. Поэтому наиболее целесообразным подходом решения задач в этой области является создание региональных норм стока, которые учитывали бы особенности природно-климатических и гидрогеологических условий конкретного района. Как показывает практика, разработка и применение региональных норм стока может обеспечивать получение наиболее достоверных характеристик стока даже в самых малоизученных районах, позволяет решать задачи, выполнение которых по существующим традиционным методам затруднено или не предусмотрено.

Создание региональных норм стока следует начинать всегда с правильного выбора основной расчетной схемы, которая должна быть получена теоретически обоснованно. Только после выбора основной расчетной схемы можно учитывать входящие в формулы параметры, зависящие от региональных условий. Затем следует выполнять тщательное изучение физико-геологических, природно-климатических, гидрологических и метеорологических условий, а также проводить необходимые полевые обследования водостоков.

Факторы, определяющие величину расхода ливневого стока, можно разделить на две самостоятельные группы: региональные, зависящие от географических координат водосбора; геометрические, влияние которых одинаково для всех бассейнов, независимо от их местоположения.

Для правильного составления региональных норм стока необходимо, прежде всего, выделить по обоснованной схеме постоянно действующие для всех бассейнов факторы стока - геометрические характеристики бассейнов и по натурным показателям искать только региональные факторы, действительно зависящие от местоположения бассейна и учитывающие особенности местного климата и впитывающую способность почв.

Для практических целей профессором О.В. Андреевым предложена схема выделения влияния геометрических элементов водосбора на величины ливневых расходов. Исключая влияние геометрических характеристик, можно с уверенностью устанавливать региональные нормы стока для любого района.

Связь между средней интенсивностью ливня а и продолжительностью выпадения осадков t описывают обычно следующей зависимостью:

где (15.26)

К - региональный климатический коэффициент.

Слой осадков за время хода ливня определяют по формуле:

(15.27)

Расчетное время дождя, наиболее опасное для проектируемых водопропускных сооружений принимается как «время добегания» воды от наиболее удаленной точки бассейна до замыкающего створа:

где (15.28)

L - длина бассейна, км;

v - скорость стекания, м/с.

Величину расхода ливневого стока принято определять по зависимости:

где (15.29)

F - площадь водосбора, км2.

Используя уравнение Шези и глубину слоя стекающей воды h, величину скорости добегания вычисляют по формуле:

v = mh 2/3 I 1/2, где (15.30)

m - показатель ровности склонов бассейна (см. табл. 31.1);

I - уклон бассейна, ‰.

На основе формул (15.27), (15.28) и (15.30) с учетом пропорциональности величин h и hд, после некоторых преобразований получим:

v 2/3 ¥ m 6/11 K 4/11 I 3/11 L 4/33 (15.31)

Объединяя формулы (15.29) и (15.31)

(15.32)

В выражении (15.32) величины в скобках объективно отображают влияние на расход Q геометрических характеристик бассейна, независимо от его географических координат. Множитель К, представляющий собой климатическую характеристику региона, объединен с постоянными коэффициентами пропорциональности, размерности и потерь, предполагаемыми в выражении (15.32), и заменен общим обозначением регионального коэффициента R.

Тогда, очевидно, региональный коэффициент учитывает и потери стока на впитывание, зависящие от характеристик почв региона.

Исходя из формулы (15.27), климатический коэффициент К выражается через слой осадков заданной продолжительности. Например, принимая t = 60 мин, получаем:

где

ачас - интенсивность ливня часовой продолжительности, мм/мин.

Потери стока на впитывание в почву можно учитывать как уменьшающим коэффициентом, так и вычитанием слоя потерь из слоя стока. Тогда с учетом потерь и с сохранением гиперболической связи в формуле (15.26) между интенсивностью водоотдачи и ее продолжительностью:

Обращают внимание на возможность уточнять региональные нормы стока, выделяя в рассматриваемом регионе бассейны с резко различающимися условиями впитывания в почву. Рекомендуют вводить в расчет «относительный коэффициент стока» - j 0, показывающий сравнительную впитывающую способность почв бассейна. С помощью этого коэффициента можно объединять данные о натурных расходах воды, сформировавшихся на бассейнах с различными почвами, приводя их к одному виду почв. Величины этих относительных коэффициентов целесообразно определять по известным таблицам обычных коэффициентов стока (например, Д.Л. Соколовского), взяв один из видов почв за исходный и приняв для него j 0 = 1. Несмотря на условность такого расчета, этот прием дает возможность уточнять региональные нормы стока для любого района, а в ряде случаев позволяет объяснить отклонения расчетных величин от натурных данных.

В итоге предлагаются следующие, наиболее полные и ясно выводимые региональные зависимости:

(15.33)

(15.34)

или после некоторого упрощения:

Q = Rj 0(m 1/2 F 3/4 I 1/4), (15.35)

приняв L = F 1/2 и вводя среднюю ширину бассейна В = F / L

где (15.36)

R - региональный коэффициент той же вероятности превышения, что и расход Q;

j 0 - относительный коэффициент стока;

m - показатель ровности склонов бассейна;

F, L, В, I - площадь, длина, средняя ширина и уклон бассейна, соответственно км2, км, км, ‰.

Таким образом, для отыскания региональных коэффициентов (постоянных для конкретного района или плавно меняющихся по его территории) необходимо натурные данные о расходах делить на функции геометрических характеристик соответствующих бассейнов, т.е.

(15.37)

Несмотря на теоретически обоснованную схему и соответствующий вывод для составления региональных норм стока, в связи с приближенностью входящих в формулы (15.33-15.37) компонентов и упрощенностью закономерностей формирования и стекания нестационарных ливневых вод по склонам водосбора, необходима соответствующая корректировка по натурным данным о расходах, чтобы региональный параметр приобретал более устойчивый характер.

Для поиска и сбора необходимых натурных сведений рекомендуют поступать следующим образом.

Предварительно на планах вдоль трассы проводят генеральный водораздел, от которого идет сток к принятым во внимание искусственным сооружениям. Это снижает ошибки определения верхних границ отдельных площадей водосбора.

Зная положение главного водосбора, по картам следует уточнить границы всех водосборов, их площади и разветвленность. Для этой цели от каждого сооружения нужно проходить по дну лога с необходимыми геодезическими приборами до водораздела и составлять продольный профиль лога. Обычно за линию водораздела геодезический ход продолжают на 10 % его длины при неровном рельефе и не менее 20 % - при плоском. Необходимо твердо убедиться в том, что принятый главный лог есть истинный. При разветвленных бассейнах необходимо пройти по главным разветвлениям, чтобы установить их боковые границы и убедиться, что второй лог не длиннее первого. За главный принимают наиболее длинный лог. По полученным точкам водоразделов всех логов уточняют на карте главный водораздел вдоль трассы и одновременно устанавливают границы между отдельными логами. Таким образом, получают план бассейнов и логов, привязанный к трассе, наглядно характеризующий общую топографическую ситуацию района. В горных и труднопроходимых районах для этой цели применяют теодолитную, аэрофотосъемку и съемку с использованием систем спутниковой навигации «GPS».

Уклоны склонов и логов определяют по планам в горизонталях или непосредственными измерениями с помощью геодезических приборов. Поскольку уклоны на одном и том же склоне не одинаковы, для оценки скорости стекания слоя стока к ближайшему логу необходимо вычислить их средневзвешенные значения.

Одним из решающих факторов, влияющих на сток, является впитывание выпавших осадков в почву. Для выяснения состава и структуры почвы и отнесения ее к определенной категории рекомендуют на бассейне делать шурфы глубиной до 0,5 м, так как для оценки впитывания ливневых дождей решающее значение имеют только верхние 20 - 30 см почвы. Количество шурфов назначают по табл. 15.25.

Таблица 15.25.

Количество шурфов, необходимое для определения категории почвы

Обследования Число шурфов на 1 км2 водосбора Всего не менее Всего не более
средняя норма
Предварительные на каждом варианте Окончательные на принятом к строительству варианте 0,5    

По результатам разработки шурфов квалифицированно определяют категорию почв по впитыванию на водосборе. Водосборы площадью более 10 км2 целесообразно делить на несколько частей, если разница в категории почв оказывается значительной.

Необходимо отметить, что на малых водосборах, расположенных в регионах с многократными муссонными ливнями значительной продолжительности, почва может находиться в полностью влагонасыщенном состоянии перед очередным, возможно самым сильным ливнем и никакого впитывания может не происходить за весь период ливня. В таких случаях в формировании стока участвуют все выпавшие осадки. Необходимо также иметь в виду, что в засушливых районах с абсолютно высохшей пылеватой и песчаной поверхностью интенсивные капли сильного ливня словно «выштукатуривают» поверхность грунта и впитывание практически и здесь отсутствует.

Наличие болот и озер на бассейне снижает скорость добегания потока. Если скорость протекания по болоту снижается в 2-3 раза по сравнению с логами при равнинном рельефе, то по озеру, в зависимости от величины аккумуляции - в 3-10 раз. Поэтому при изысканиях необходимо оценить не только площадь болот и озер в процентах, но также определять длину протекания потока по болоту и озеру. Если болота и озера расположены в верхней части бассейна, то, возможно, что при отсечении этой части водосбора расчетный расход получится больше, чем при учете площади всего водосбора.

При изысканиях необходимо наиболее квалифицированным образом собрать все требующиеся гидрометеорологические и паводковые данные у близлежащих гидрометеостанций, ознакомиться с архивами старых проектов, материалами различных организаций. Следует собрать сведения о выдающихся паводках, разливах на дорогах и ливнях как по официальным, так и по иным доступным источникам.

Обычно удается собрать полевые данные путем опроса работников эксплуатационной службы дороги, а также местного населения. Оценка достоверности полученных данных осуществляется компетентно с соответствующей ответственностью. При сборе и визуальном осмотре необходимо установить:

следы и отметки наблюдаемых уровней в логах, на опорах моста, у входов существующих водопропускных сооружений и т.д.;

какие паводки более опасны для данного сооружения: от ливней или от снеготаяния;

факты перелива воды через насыпь, величины слоя перелившейся воды и размыва земляного полотна, характерные повреждения сооружений от прохода воды;

повторяемость паводков разной величины в данном месте.

Если во время изысканий пойдет сильный дождь, то следует измерить количество выпавших осадков, обратив особое внимание на количество осадков во время прохода наиболее интенсивного ливня.

Зная количество осадков и время, можно определить вероятность превышения паводка.

Обследование следов прошедших паводков может косвенно помочь определению расчетных расходов и объемов стока с определенной вероятностью превышения. Однако следует отметить, что обычно повторяемость в натуре расходов, зафиксированных наблюдениями и прошедших через сооружение, установить довольно сложно. Величины расходов и объемов, определенные приближенно, а не гидрометрически, могут иметь значительные отклонения от действительных. Применяемые гидравлические формулы определяют расход, проходящий лишь через сооружение, т.е. искаженный аккумуляцией. Если перед сооружением аккумулировалась вода, то фактический расход, притекавший с водосбора, может оказаться в зависимости от пологости бассейна значительно больше. Необходимо также учесть, что при любой вероятности превышения может быть любое количество равновозможных сочетаний интенсивности и продолжительности водоотдачи. В расчетах находят их самое невыгодное сочетание для рассматриваемого водосбора. Тогда вероятности превышения слоев осадков будут идентичны ВП расходов.

Очевидно, что при учете аккумуляции ливневых вод перед сооружениями необходимо определить не только расход, но и объем стока. Для малых водосборов одна из наиболее удобных является методика, разработанная в МАДИ в 1977 году (см. разд. 15.3). В этой связи целесообразной является разработка карты ливневого районирования (см. рис. 15.5) и составление таблиц интенсивности ливня часовой продолжительности при различных вероятностях превышения (табл. 15.7). На основе обработки натурных данных принято разрабатывать карты изолиний интенсивностей часовой продолжительности, суточных и годовых максимальных слоев осадков и т.д. для различных вероятностей превышения*.

* Глава 15 подготовлена на основе материалов проф. О.В. Андреева из Справочника инженера-дорожника (Проектирование автомобильных дорог: Справочник инж.-дор. / Под ред. д-ра техн. наук П.А. Федотова. - М.: Транспорт, 1989. - 438 с).

ГЛАВА 16. ПРОЕКТИРОВАНИЕ МОСТОВЫХ ПЕРЕХОДОВ




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1053; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.