Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электропривод с линейными электродвигателями




Исполнительные органы подъемно-транспортных машин, механизмов подач металлообрабатывающих станков, кузнечных прессов, молотов совершают поступательное движение. При использовании для их привода двигателей вращательного движения требуется механическая передача (кривошипно-шатунный механизм, передача винт-гайка и т. д.), преобразующая вращательное движение вала двигателя в поступательное движение исполнительного органа.

Применение линейных двигателей, движущаяся часть которых совершает поступательное линейное движение, позволяет упростить или полностью исключить механическую передачу и за счет этого повысить экономичность и надежность рабочей машины или механизма в целом [21, 25]. Кроме того, появление линейных двигателей позволило решить ряд важных технических проблем, например создание высокоскоростного электрического транспорта и установок для перекачки жидких металлов.

Линейные двигатели могут быть асинхронными, синхронными и постоянного тока, повторяя по принципу действия соответствующие двигатели вращательного движения.

Большее распространение получили линейные асинхронные двигатели (ЛАД), представление об устройстве которых можно получить, рели мысленно разрезать статор 4 и ротор 1 с обмотками 3 и 2 обычного АД (рис 6.1, а) вдоль оси по образующей 00 и развернутьихвплоскость. Образовавшаяся плоская конструкция (рис 6.1, б) представляет собой ЛАД, движущуюся часть которого называют вторичным элементом. Если обмотки статора ЛАД подключить к сети переменного тока, образуется магнитное поле, ось которого будет перемещаться вдоль воздушного зазора со скоростью, пропорциональной частоте питающего напряжения f 1 к длине полюсного деления t,

(6.1)

Магнитное поле, перемещающееся вдоль зазора, пересекает про родники обмотки 2 вторичного элемента 1 и индуцирует в них ЭДС, под действием которой по обмотке начнут проходить токи. Взаимодействие этих токов с магнитным полем приведет к появлению силы, действующей на вторичный элемент по правилу Ленца в направлении перемещения магнитного поля. Вторичный элемент под действием этой силы начнет двигаться с некоторым отставанием (скольжением) от магнитного поля, как и в обычном АД.

Показанная на рис. 6.1, б конструкция представляет собой ЛАД с односторонним статором и вторичным элементом одного с ним размера. В зависимости от назначения ЛАД его вторичный элемент может быть длиннее статора или короче его. В первом случае ЛАД получили название двигателей с коротким статором, а во втором случае – с коротким вторичным элементом.

Вторичный элемент ЛАД не всегда снабжается обмоткой. Часто (и в этом одно из больших достоинств ЛАД) в качестве вторичного элемента используется лист, полоса или рельс, выполненные из стали, меди или алюминия. Такой вторичный элемент может устанавливаться между двумя статорами (ЛАД с двусторонним статором) или между статором и ферромагнитным сердечником (ЛАД с односторонним статором и сердечником). Линейный двигатель со вторичным элементом в виде полосы аналогичен обычному АД с массивным ферромагнитным ротором.

Обмотки статора ЛАД имеют те же самые соединения, что и обычные АД, и подключаются к сети трехфазного переменного тока.

Линейные двигатели могут работать и в обращенном режиме движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель (называемый двигателем с подвижным статором) обычно применяется на электрическом транспорте. Рассмотрим некоторые примеры использования ЛАД.

Линейный двигатель, установленный на рельсовом транспортном средстве, показан на рис. 6.2, а. Двигатель с двусторонним статором 1 крепится на тележке 3 подвижного состава. Вторичным элементом является укрепленная между рельсами металлическая полоса 2. Напряжение на статор двигателя подается с помощью скользящих контактов (троллеев). Линейные двигатели, где вторичным элементом служит рельс или другой элемент несущей конструкции, используют для монорельсовых дорог и механизмов передвижения кранов.

На рис. 6.2, б показан ЛАД, предназначенный для механизмов транспортировки грузов. Конвейер, служащий для перемещения из бункера 4 сыпучего материала 5, состоит из металлической ленты. 6 барабанов 7. Металлическая лента конвейера проходит внутри статоров 1 ЛАД, являясь его вторичным элементом. При использовании ЛАД в этом случае устраняется проскальзывание ленты и появляется возможность увеличить скорость ее движения.

Линейные двигатели применяются также в электроприводах сваезабивных молотов, прессов, ткацких станков, вязальных машин, слитковозов, толкателей и многих других рабочих машин. В настоящее время ЛАД разработаны на мощности от нескольких ватт до нескольких сотен киловатт и скорости движения до 100–150 км/ч.

Линейные двигатели постоянного тока (ЛДПТ) обычно применяются для обеспечения небольших перемещений, когда требуются значительные перестановочные усилия и высокая точность движения. Линейные двигатели постоянного тока, как и двигатели вращательного движения, позволяют при необходимости простыми средствами регулировать скорость перемещения исполнительных органов. Чаще всего ЛДПТ применяются в приводах подач различных станков.

Линейные синхронные двигатели (ЛСД) находят наибольшее применение при создании высокоскоростного электрического транспорта, где достоинства ЛСД проявляются наиболее заметно. Причина заключается в том, что по условиям нормальной эксплуатации такого транспорта необходим сравнительно большой зазор между подвижной частью и вторичным элементом. Линейный асинхронный двигатель имеет при этом низкий коэффициент мощности, и его применение оказывается экономически невыгодным, ЛСД, напротив, допускает наличие большого воздушного зазора между статором и вторичным элементом и работает при этом с cosj, близким к единице.

Применение ЛСД в высокоскоростном электрическом транспорте обычно сочетается с использованием магнитной подвески вагонов и сверхпроводящих магнитов и обмоток возбуждения, что позволяет получить комфортность движения и хорошие экономические показатели работы подвижного состава. Мощности ЛСД в электрическом транспорте достигают нескольких тысяч киловатт, а скорости движения – 400–500 км/ч.

Линейные двигатели имеют широкие перспективы для дальнейшего развития.




Поделиться с друзьями:


Дата добавления: 2015-06-29; Просмотров: 913; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.