Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Все представители третьего поколения пока находятся на этапе разработки или испытаний




Данное поколение фотоэлектрических элементов помимо упомянутых включает еще и фотоэлектрохимические, нанокристаллические и полимерные солнечные батареи, применение которых будет осуществимо только на земной поверхности.

Наибольшую интенсивность поток энергии имеет в мае, июне и июле. В этот период в средней полосе России на 1 кв. метр поверхности приходится 5 кВт.час в день. Наименьшая интенсивность в декабре-январе, когда 1 кв. метр поверхности приходится 0,7 кВт.час в день.

Зоны максимальной интенсивности солнечного излучения - на 1 квадратный метр поступает более 5 кВт.час. солнечной энергии в день.

По южной границе России от Байкала до Владивостока, в районе Якутска, на юге Республики Тыва и Республики Бурятия, как это не странно, за Полярным Кругом в восточной части Северной Земли.

7) Продолжительность солнечного сияния в год

8) Способы получения электричества и тепла из солнечного излучения

Получение электроэнергии с помощью фотоэлементов.

Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны; двигатель Стирлинга и т. д.

Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

10) Солнечный фотоэлемент

Фотоэлемент, представляет собой панель, состоящую из следующих частей:

1 - солнечное излучение (фотоны),

2 - наружный контакт,

3 - отрицательно заряженный слой,

4 - слой утечки,

5 - положительно заряженный слой,

6 - внутренний контакт.

11) P - n переход в солнечном элементе

Зонная модель разомкнутого p-n-перехода:

а) - в начальный момент освещения;

б) - изменение зонной модели под действием постоянного освещения и возникновение фотоЭДС

 

 

12) Вольт – амперная характеристика p - n перехода

Величина установившейся фото ЭДС при освещении перехода излучением постоянной интенсивности описывается уравнением вольт - амперной характеристики (ВАХ)

13) Эквивалентная схема солнечного элемента

ВАХ поясняет эквивалентная схема фотоэлемента, включающая источник тока, где S - площадь фотоэлемента, а коэффициент собирания Q - безразмерный множитель (<1), показывающий, какая доля всех созданных светом электронно-дырочных пар (SN0) собирается p-n-переходом.

Параллельно источнику тока включен p-n-переход. p-n-Переход шунтирует нагрузку, и при увеличении напряжения ток через него быстро возрастает. В нагрузку (сопротивление R) отбирается ток I.

x - коэффициент формы или коэффициент заполнения вольт-амперной характеристики

14) Основные параметры фотоэлемента

Написанное выражение относится к случаю, когда выходная мощность выражается в виде электрической энергии, где

представляют собой напряжение разомкнутой цепи (э. д. с.) и ток короткого замыкания. Коэффициент k лежит в пределах от 0,25 до 1 и зависит от выбора внешней нагрузки.

15) Виды солнечных фотоэлементов

Все фотоэлектрические элементы представлены четырьмя поколениями:

Первое составляют монокристаллические кремниевые элементы, способные генерировать электрическую энергию от источника излучения, длина волны которого совпадает с таковой солнечного света. Элементы подобного типа – основная технология, применяемая в производстве коммерческих солнечных батарей: ей принадлежит 86% рынка земных фотоэлектрических элементов.

Второе поколение основано на использовании тонких эпитаксиальных полупроводниковых батарей. Существует два класса эпитаксиальных фотогальванических элементов: космические и земные. Космические эффективны на 28-30%, но стоимость одного ватта производимой ими энергии выше, чем у тонкопленочных конкурентов (земных фотоэлементов), однако беда последних – КПД, не превышающий 5-7%. Их использование в космических проектах пока кажется весьма сомнительным.

Ряд технологий и полупроводниковых материалов в настоящее время рассматриваются в плане эффективности их применения в создании солнечных элементов: аморфный кремний, микрокристаллический кремний, теллурид кадмия, а также создание тонких Ga-As-пленок для космической индустрии (с потенциальным КПД до 37%) - все это сейчас на стадии разработки. Фотоэлектрические элементы второго поколения занимают лишь малую часть рынка применяемых на Земле батарей, но примерно 90% космического принадлежит именно им.

16) Виды солнечных фотоэлементов

Третье поколение фотогальванических элементов значительно отличается от предыдущих двух. Оно представлено квантовыми точками (фрагментами проводника или полупроводника, ограниченными по всем трём пространственным измерениям, содержащими электроны; они настолько малы, что осуществимы квантовые эффекты) и устройствами со встроенными углеродными нанотрубками. Их КПД, по мнению ученых, к моменту начала широкомасштабного производства достигнет 45%.

Не существующее на данный момент четвертое поколение солнечных батарей предположительно будет представлено композитными фотогальваническими элементами, в которых будут сочетаться полимеры и наночастицы, образующие один монослой. В дальнейшем эти тонкие слои могут быть совмещены с образованием полноценных, более эффективных и экономичных солнечных батарей, что будет достигнуто за счет следующего эффекта, кстати, частично уже используемого NASA в проекте по исследованию Марса: первым слоем фотоэлемента будет тот, что превращает в электроток разные типы света, вторым – преобразующий в электроэнергию свет прошедший и не уловившийся в первом, а последний предназначен для инфракрасных лучей. Таким образом будет достигнуто использование почти полного спектра улавливаемого излучения.

19) Схемы работы солнечной электростанции

Автономное обеспечение объекта (с аккумуляторами).

Объект питается только от солнечных батарей.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 480; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.