Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнивание сети трилатерации параметрическим методом




 

Студенту предлагается уравнять четырехугольник трилатерации параметрическим способом. Данные представлены в приложении 3. Последовательность уравнительных вычислений проследим на примере сети, изображенной на рис. 3.1.

 
Рис.3.1. Схема сети трилатерации

Таблица 24

Исходные данные
Пункт X ( м) Y (м)
  6013456,321 2373202,505
  6013610,202 2375303,311

 

Таблица 25

Значения измеренных сторон, приведенных

к центрам знаков и редуцированных на плоскость

Сторона Длины сторон, (м)
1 – 3 3026,181
1 – 4 2747,965
2 – 3 2389,343
2 – 4 4264,458
2 – 5 2019,859
3 – 4 3343,757
3 – 5 2836,926

 

Стороны в данной сети приведены к центрам знаков и редуцированы на плоскость в проекции Гаусса-Крюгера, последовательность предварительной обработки измерений описана в предыдущих параграфах. Координаты исходных пунктов представлены в таблице 24, измеренные величины в таблице 25.

В сети измеренными величинами являются длины (n =7), в качестве независимых параметров выберем координаты пунктов 3,4 и 5 (k =6). Далее вычислительный процесс можно разбить на этапы.

1. Согласно алгоритму способа составляем 7 уравнений связи измеренные длины функционально связаны с параметрами (координатами) формулами обратной геодезической задачи:

,

,

,

,

,

,

.

2. Определяем веса измеренных величин по формуле , где С =100, принимается условно, чтобы значения весов были близкими к единице, поскольку длины в сети трилатерации измерены светодальномером СТ-5, для вычисления средней квадратической ошибки измерения используем уравнение светодальномера:

, коэффициенты a = 10 мм и b = 5 мм соответствуют светодальномеру СТ-5, D – расстояние в километрах.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 1519; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.