КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Томск 2007 1 страница
Учебное пособие Дополнительные условия и заключительные положения Конфиденциальность Споры и разногласия Документ, выданный соответствующей торговой палатой или иным компетентным органом, является достаточным подтверждением наличия и продолжительности действия обстоятельств, указанных в п. 12.1. 13.1. Все споры и разногласия, которые могут возникнуть между сторонами по вопросам, не нашедшим своего разрешения в тексте данного договора, будут разрешаться путем переговоров на основе действующего законодательства и обычаев делового оборота. 13.2. При не урегулировании в процессе переговоров спорных вопросов, споры разрешаются в суде в порядке, установленном действующим законодательством. 14.1. В течение срока действия настоящего договора, а также в течение / указать срок / после его прекращения стороны не должны предоставлять или разглашать иным способом конфиденциальную информацию, полученную в результате совместной деятельности, равно как и не должны недобросовестно использовать такую информацию для того, чтобы самим конкурировать друг с другом. 15.1. Дополнительные условия по настоящему договору: _____________________________________________________________________ 15.2. Все изменения и дополнения к настоящему договору являются его неотъемлемыми частями и действительны, если совершены в той же форме, что и настоящий договор и подписаны обеими Сторонами или надлежаще уполномоченными на то представителями сторон. 15.3. Настоящий договор составлен в двух экземплярах: по одному экземпляру для каждой Стороны. Каждый экземпляр имеет равную юридическую силу. 15.4. Все уведомления и сообщения должны направляться в письменной форме. 15.5. Во всем остальном, не предусмотренном настоящим Договором, Стороны будут руководствоваться действующим законодательством РФ.
ББК Ю25 Я 73
А.А. Корниенко, И.Б. Ардашкин, А.Ю. Чмыхало. Философия науки. Томск: Изд. ТПУ, 2007. - 164 с.
Эта учебное пособие состоит из пяти глав, посвященных существующей интерпретации в литературе основных моментов философии науки. Учебное пособие подготовлено на кафедре философии ТПУ и предназначено для магистров, обучающихся по всем специальностям. Учебное пособие подготовлено в соответствии с учебной программой.
Рецензенты:
Коробейникова Л.А. – проф., д.ф.н., профессор кафедры культурологии ТГУ Петрова Г.И. – проф., д.ф.н., зав. кафедрой философии ТГУ
© Томский политехнический университет, 2007 СОДЕРЖАНИЕ
ПРЕДИСЛОВИЕ
Традиция философского осмысления науки нашла в ХХ веке свое логическое оформление в становлении особой философской дисциплины – философии науки. Большой вклад в дело становления данной дисциплины внесли не только крупнейшие отечественные и зарубежные философы, такие, как К. Поппер, И. Лакатос, Т. Кун, П. Фейерабенд, Ст. Тулмин, П.В. Копнин, Б.М. Кедров, В.С. Швырев, В.С. Степин и др., но и ученые – представители естественнонаучных дисциплин, чьи исследования в значительной степени повлияли на рост интереса к науке, научной деятельности, обусловили желание реконструировать логику ее развития со стороны философов. Среди этой когорты ученых можно упомянуть имена: А. Эйнштейна, Н. Бора, В. Гейзенберга, Л. де Бройля, И.Р. Пригожина, Г. Хакена, П.Л. Капицы и многих других. В рамках философии науки рассматривается целый комплекс вопросов, связанных с процессом развития научного знания, с попыткой проанализировать и реконструировать логику научного познания, движения к научному открытию. В настоящем пособии нашли свое отражение некоторые из наиболее основных и важных аспектов, характерных для современной философии науки. В содержательном плане пособие представляет собой следующее: В первом разделе уделено внимание характеристике современного состояния науки, описанию проблем, на решение которых направлены основные усилия научного сообщества, рассматриваются особенности развития науки, и раскрывается ее роль в развитии современной цивилизации. Во втором разделе пособия уделено внимание рассмотрению одной из характерных особенностей развития науки – дифференциации научного знания, проявляющейся в форме становления новых научных дисциплин. В этом разделе представлен целый ряд возможных классификаций науки и их анализ. В третьем разделе анализируются особенности двух уровней научного познания – эмпирического и теоретического, их структура и специфика формирования. Четвертый раздел пособия посвящен анализу процесса формирования научного знания через рассмотрение таких его аспектов, как формирование научной проблемы и ее влияние в становлении научного знания, гипотеза и ее роль в научном познании, научный факт, научная теория, взаимосвязь теории и практики, возможности практического использования научного знания, взаимосвязь науки и техники. Пятый раздел рассматривает современные философские представления на характер и содержание научного познания. В разделе сделан акцент на два важнейших момента научного познания, играющих большое знание в современной философии научного познания: фактор иррациональности как основание инновационного творчества и аспект контекстуального обоснования познания. Пособие ориентировано на существующий образовательных стандарт и предназначено для широкого круга читателей. Авторы пытались не только осветить вышеобозначенный круг проблем по философии науки, но и представить, как читатель сможет применить эти знания на практике, ибо вопросы, рассматриваемые в настоящем пособии, играют определяющую роль в развитии научного творчества.
Раздел 1. Современные проблемы науки 1.1. Особенности современного развития науки и ее роль в развитии современной цивилизации. Цикличность развития науки. Анализируя развитие человечества за последние полстолетия, множество исследователей отмечает глубокие качественные изменения современного общества и условий его существования, резко отличающих современность от предыдущих исторических эпох. Установление этой новой качественной стадии в развитии человечества привело к формулированию целого ряда понятий, которые применяются для его характеристики: постиндустриальное общество, информационное общество, техногенная цивилизация и др. Эти понятия отражают глобальные количественные и качественные изменения всех сфер жизни общества и его структуры, произошедшие за указанный период. Они, в свою очередь, во многом связаны с ускорением темпов развития науки, изменением ее функций и роли в обществе. В работах целого ряда исследователей, например, Н.Д. Кондратьева, А.Л. Чижевского и др. отмечался неравномерный, циклический процесс роста научных открытий и изобретений, а в работе русского философа И.И. Лапшина «Философия изобретения и изобретение в философии» (1921) было сформулировано утверждение об их ускоренном росте. Количественный анализ темпов развития науки показывает, что за каждые 15 лет объем научной продукции возрастает в е раз, где е =2,72 – основание натуральных логарифмов. Это утверждение составляет сущность закономерности экспоненциального развития науки. Исходя из нее, можно сделать вывод о том, что за каждые 60 лет научная продукция увеличивается приблизительно в 50 раз, а за последние 30 лет ХХ века создано научной продукции приблизительно в 6,4 раза больше, чем за всю предыдущую историю человечества. Большинство стран мира активно вкладывают финансовые, материальные и иные средства в развитие своего кадрового научно-технического потенциала. С середины 90-х гг. в европейских и азиатских странах быстро увеличивалось число научных степеней в области естественных и технических дисциплин. В Китае, Индии, Японии, Южной Корее, Сингапуре и Тайване численность имеющих первую университетскую научную степень за период с 1975 по 1995 гг. удвоилась, а специалистов технических наук утроилась. По данным на 1993 г. Япония имела 80 ученых и инженеров на 10 тыс. работающих, США - 74. Экспоненциальное развитие науки не может являться бесконечным. Рост числа научных публикаций ведет к падению их качества, уменьшению количества по-настоящему ценной научной информации. Очевидно, что резервом экспоненциального роста науки является не экстенсивное увеличение числа научных сотрудников и числа производимых ими научных публикаций, а привлечение прогрессивных методов и технологий исследования, повышающих качество научной работы. Наука и технология: особенности взаимодействия и совместного развития. Роль технологии в современной цивилизации. Технология – это организация естественных процессов, направленная на создание искусственных объектов. В развитии технологии явно просматриваются крупные всплески. Как уже отмечалось выше, целым рядом исследователей было установлено существование множества циклических процессов, например, экономических, солнечной активности и др., имеющих различную временную продолжительность. Среди указанного ряда ученых выделяется имя русского экономиста Н.Д. Кондратьева (1892-1938). Рассматривая статистику экономической конъюнктуры, начиная с конца ХVIII в., он установил существование циклов в ее развитии продолжительностью 48-55 лет. Анализ данных позволил ему установить четыре эмпирические правильности в развитии больших экономических циклов (циклов экономической конъюнктуры). Выведенная им первая эмпирическая правильность непосредственно затрагивает вопрос о закономерности в развитии технологии и науки в целом: «перед началом и в начале повышательной волны каждого большого цикла наблюдаются глубокие изменения в условиях экономической жизни общества. Эти изменения выражаются в значительных изменениях техники (чему предшествуют, в свою очередь, значительные технические открытия и изобретения), в вовлечении в мировые экономические связи новых стран…»[1]. В работе Н.Д. Кондратьева хронологические рамки, последнего из обозначенных им циклов, соответствуют: повышательная волна III-го цикла с периода 1891-1896гг. до периода 1914-1920гг.- вероятная понижательная волна III-го цикла с периода 1914-1920гг. Опираясь на эти данные можно установить, что начало следующей повышательной волны падает приблизительно на время второй мировой войны и на послевоенные годы до конца 1960-х годов. Действительно, все новые технологии, которые определяют «технологический портрет» конца ХХ века, родились почти одновременно в период с конца 1930-х по конец 50-х годов. Эти технологии основывались на всего нескольких открытиях. В одной из своих статей Нобелевский лауреат по физике Ж. Алферов[2] отметил всего три, сугубо экспериментальных открытия, основанных на квантовой теории, которые не только определили научно-технический прогресс во второй половине ХХ века, по-новому объяснив многие вещи в физике, но и привели к масштабным социальным изменениям и во многом предопределили современное развитие как передовых стран, так и практически всего населения земного шара. Это: 1) Открытие деления урана под воздействием нейтронного облучения, сделанное О. Ганом и Ф. Штрассманом в 1938 г.; 2) Создание транзистора, осуществленное американскими физиками Д. Бардиным, У. Браттейном, У. Шокли в лаборатории компании «Белл телефон»; 3) открытие лазерно-мазерного принципа. Оно было сделано практически одновременно в 1954-1955гг. Ч. Таунсоном в США и Н.Г. Басовым и А.М. Прохоровым в Физическом институте АН СССР. Кроме того, в это время появились ЭВМ, микроэлектроника, интегрально-групповой и планарный принципы синтеза, на которых основана микроэлектроника, ядерная энергетика, расшифровка генетического кода, первая искусственная белковая структура. В этот же период были разработаны принципы системного программирования, начаты разработки светопроводящих линий связи, начато освоение космического пространства и, тем самым, заложены основы будущей космической технологии. На период новой понижательной волны, выпавшей на время с конца 60-х по конец 80-х – начало 90-х годов ХХ века приходится рождение прежде всего трех новых технологий: микропроцессорной, космической и генной, или генной инженерии, которые нашли свое дальнейшее развитие в последующие годы. С их совершенствованием, по всей видимости, связано дальнейшее развитие науки в ближайшие годы начала ХХI века. Все эти технологии являются совершенно различными по своему физическому содержанию. Микропроцессорная технология имеет много назначений: создание персональных электронных партнеров для каждого человека, интеллектуализация всей техносферы, усиление и защита функций организма с помощью персональных медико-кибернетических устройств, в т.ч. вживляемых в организм. Космическая технология, которая, в отличие от микропроцессорной, развивается относительно медленными темпами (что связано с более крупными финансовыми, материальными, интеллектуальными и т.д. затратами), имеет огромный потенциал в различных измерениях: она дополняет земную технологию, обещает в будущем разгрузить планету от нежелательных производств и раздвинуть границы обитания человечества далеко за пределы его эволюционной родины – планеты Земля и Солнечной системы. Генная инженерия и, более широко, генная технология или биотехнология, имеет цель усовершенствовать биологию самого человека, обогатить биосферу новыми полезными видами, служит в качестве инструмента в производстве продуктов питания и небиологических изделий и др. Биотехнологическим способом производят генно-инженерные белки (интерфероны, инсулин, вакцины против гепатита и др.), ферменты для фармацевтической промышленности, диагностических средств для клинических исследований (тест-системы на наркотики, лекарства, гормоны и т.д.), витамины, биоразлагаемые пластмассы, антибиотики, биосовместимые материалы и др. Особая роль отводится сельскохозяйственной биотехнологии – это создание и культивация трансгенных растений, микробиологический синтез средств защиты растений, производство кормов и ферментов для кормопроизводства. Все три технологии, зародившиеся в 70-е годы ХХ века, непосредственно связаны с глобальными условиями существования и эволюции человеческой популяции. Эти инновации явились одними из самых радикальных в истории человечества, ибо все предыдущие, такие, как огонь, каменные орудия, язык, письменность, электричество и т.д., не затрагивали ни природные возможности интеллекта человека, ни генетических основ биологической жизни, ни ареала ее распространения. Задумываясь о перспективах эволюции технологий, на первый план выходит проблема, важность которой со всей остротой мир осознал в те же 70-80-е годы ХХ века – проблема взаимодействия техносферы с природной средой или проблема экологии. Со времени выделения человека из животного мира он стал создавать свой собственный мир, сосуществующий с естественным миром живой и неживой природы. Технология, как инструмент создания искусственного мира, неизбежно оказывает экологическое давление на естественную среду обитания. Это давление может стать опасным, когда его интенсивность достигнет критического уровня, т.е. превысит уровень восстановительного потенциала природы. Особенно активно восстановительный потенциал природы подавляется в процессе урбанизации, интегрирующей почти все современные технологии. Урбанизация, формируя города, мегаполисы, агломерации городов-гигантов - территории почти сплошной урбанизации, подавляет естественный восстанавливающий потенциал природы. Земные насаждения и домашние растения не могут полностью восполнить его и радикально изменить картину. На рубеже ХХ-ХХI веков уже порядка четверти населения планеты проживает в мегаполисах. С точки зрения глобальной экологии и дальнейшего развития технологии науки, такая концентрация населения имеет не только отрицательные последствия, но и играет роль положительного фактора, ибо ведет к поиску решений новых актуальных проблем и дальнейшему научному поиску. Интенсивный процесс урбанизации остро поставил перед наукой необходимость решения проблемы утилизации городских отходов и создания «экологически чистой» транспортной сети, формирования внутренней экосистемы городов, обеспечивающей не только бытовые удобства, но и восполняющей отсутствие прямого контакта человека с природой. Дальнейшее развитие информационных технологий создает возможность решения некоторых проблем. Творческий обмен идеями и знаниями с помощью компьютерных сетей, развитие видеоинформационной техники, включая световодные линии связи, цветного и, вполне вероятно, далее голографического телевидения, преображают сферу коммуникаций, резко сокращают необходимость перемещения, переездов людей, оптимизируют грузовые перевозки, сохраняя транспорт только в той мере, в которой он действительно необходим. Кроме того, экологическое давление создается и за счет использования сельскохозяйственной технологии, ведущей к опустыниванию плодородных земель из-за интенсивного скотоводства и земледелия. В этой связи перед наукой встают проблемы создания новых технологий защиты почвы от эрозии и обезвоживания, защиты гидросферы от стока химических удобрений и химикатов, минимизация химического и механического вмешательства в биосферный цикл. Помимо решения этих проблем, имеется и проблема, связанная с тем, что целенаправленная технологическая деятельность всегда имела дело с резко ограниченным набором синтезируемых форм, в то время как «свободный поиск» дикой природы служит источником практически бесконечного их многообразия. Технологическое давление на естественную среду ведет к сужению многообразия форм жизни, что в эволюционной перспективе снижает степень выживаемости самого человека и биосферы в целом. Именно поэтому другим центром кристаллизации новой технологии и, соответственно, усилий науки, является создание безотходного производства, которое воплощает принцип предельной интеграции процессов синтеза, распада и циркуляции, сформировавшийся за миллиарды лет в живой природе. В ракурсе экологических критериев весьма противоречивыми оказываются промышленные сооружения ХХ века – энергетические, металлургические, химические и др. С одной стороны, они могут служить основой создания новых технологических комплексов, а с другой – являются источником слишком сильного возмущения среды. В этой связи развитие сети электронных средств обработки информации – путь к дальнейшему повышению эффективности всех существующих технологических производств и их энергообеспечения. Коэффициент полезного действия подавляющего большинства технических устройств составляет единицы процентов. Чтобы индустрия давала нам много, мы берем у природы, растрачиваем и выбрасываем еще больше. Информационные технологии позволяют снизить удельное потребление массы и энергии, ибо обработка и хранение информации требует затрат энергии, вещества, пространства и времени, но они значительно меньше, чем отображаемые этими информационными процессами события реального мира. И, кроме того, информационная технология уже используется в направлении освобождения человека от всех видов рутинного труда, ставя перед человеком проблему использования освобождающихся творческих производительных сил, творческого потенциала. Функции науки в современном обществе. Обстоятельства, связанные с технологическими изменениями, произошедшими за последние десятилетия ХХ века – начало ХХI века, обусловили изменение функций науки и, в первую очередь, естествознания. Раньше основная функция науки заключалась, прежде всего, в описании, систематизации и объяснении исследуемых объектов. Сейчас наука стала неотъемлемой частью производственной деятельности человека. Современное производство имеет наукоемкий характер, что определяет процесс сращивания научной и производственно-технической деятельности. Результатом этого является создание крупных научно-производственных объединений, межотраслевых научно-технических и производственных комплексов. В связи с этим научно-технический потенциал передовых государств переживает структурные изменения и смену приоритетов. Прежде всего, заметно меняется структура финансирования науки и техники. Доля государства сокращается, а роль частного сектора в качестве источника средств на исследования и разработки возрастает. Так, например, в США национальные расходы на науку в 1997г. достигли 206 миллиардов долларов, при этом рост произошел, главным образом, за счет промышленного сектора. Соответственно возрастают расходы на прикладные исследования и разработки, их объемы по сравнению с объемами фундаментальных исследований и разработок. Расходы федерального правительства США в 1997г. были на 12% меньше расходов 1989 г. (с учетом инфляции). В общих национальных затратах на исследования и разработки доля правительства США сократилась с 46% в период 80-х гг. до 30% сейчас. Наука сама становится мощной производительной силой, хотя и не производит непосредственно материальной продукции. Продукция науки – это научная информация, научные разработки, открытия, изобретения, которые лежат в основе производства любой продукции, в т.ч. и производства материальных ценностей. Но стремление к росту производства материальных ценностей вступает в противоречие с необходимостью сохранения среды обитания человека. Информатизация общества и производственной деятельности, разработка и внедрение новых технологий, другие качественные изменения, произошедшие в обществе за последнее время, стимулировали и изменение роли самой науки. Изменение роли науки в обществе связано с тем, что только правительства национальных государств, способны устанавливать законы, определяющие и регулирующие обязательные нормы поведения человека и отдельных социальных групп в рамках общества в целом. В современном, быстро меняющемся мире правительства государств не в силах проводить политику, которая бы не учитывала вопросы, касающиеся сохранения окружающей среды, материального обеспечения населения, решения демографических проблем, обеспечения ядерной безопасности и др. Наука активно вмешивается в сферу политики. Активизации этой роли способствовала тенденция и интеграции и глобализации современного мира. Наука в условиях глобализации. Глобализация предполагает, что множество социальных, экономических, культурных, политических, научных и иных отношений и связей приобретают всемирный характер. В то же время она подразумевает возрастание уровней взаимодействия, как в пределах отдельных государств, так и между государствами. Новым для современных процессов глобализации является распространение социальных связей на такие сферы деятельности, как технологическая, организационная, научная, административная, правовая и другие, а также постоянная интенсификация тенденций к установлению взаимосвязей через многочисленные сети современных коммуникаций и разработки новой информационной технологии. Процессы глобализации были, с одной стороны, обусловлены научно-техническим прогрессом, обеспечившим интенсивное развитие современного мира, с другой стороны, они повлияли на изменение роли самой науки, которое выразилось: Во-первых, в появлении наступательных ядерных вооружений и средств доставки в любую точку земного шара, что по сути дела, элиминировало фактор неуязвимости той или иной страны в силу ее географической удаленности или изолированности акваторий, либо иной естественной преградой. В современных реальностях воздушное пространство и космос с военно-политической точки зрения играют не меньшую, если не большую роль, чем суша и море. Ученые, занимавшиеся созданием ядерного оружия в лабораториях США и Англии, уже на стадии разработки осознавали глобальные разрушительные последствия его применения, а потому многие из них, одни активно, другие пассивно, способствовали тому, чтобы ликвидировать монополию США и Великобритании на обладание ядерным оружием. Р. Оппенгеймер, Э. Ферми, Н. Бор, Этель и Джулиус Розенберг, К. Фукс и многие другие ученые-физики способствовали ликвидации ядерной монополии США в конце 40-х ХХ в. и способствовали недопущению полномасштабной ядерной войны между СССР и США в 1940-е – 50-е годы. Уже с конца 40-х годов деятели науки, прежде всего физики, активно включились в движение борцов за мир и ядерное разоружение. Так поступили, например, супруги Жолио-Кюри – Нобелевские лауреаты 1935г. по физике, открывшие в 1934г. явление искусственной радиоактивности. Ф. Жолио-Кюри, с 1946 года руководивший комассириатом по атомной энергии Франции, и И. Жолио-Кюри, также входившая в состав членов комиссариата, в 1950 году были выведены из него за активную деятельность, связанную с боьбой за мир и ядерное разоружение. С 1951 года Ф. Жолио-Кюри стал председателем Всемирного Совета Мира. Здесь же можно отметить имя А.Д. Сахарова – одного из создателей водородной бомбы, в 60-80-е годы ставшего активным деятелем диссидентного и правозащитного движения в СССР, выступавшего за разоружение, ликвидацию опасности термоядерной войны. Его деятельность была отмечена Нобелевской премией мира (1975 год). Этот ряд имен можно продолжать и продолжать. Активную роль в деле защиты мира, предотвращения распространения ядерного оружия, сохранения окружающей среды играют и многие формальные и неформальные организации ученых различных стран мира: ЮНЕП (организация по сохранению среды обитания), МАГАТЭ (международное агентство ООН по атомной энергии) и др. Мнение ученых сыграло важную роль в деле запрещения испытания ядерного оружия в атмосфере, в космическом пространстве и под водой, ограничении испытаний ядерного оружия, в запрещении химического и биологического оружия, в сокращении существующих ядерных арсеналов; Во-вторых, наука сыграла и играет роль фактора, обеспечивающего функционирование механизма синхронизации современного мира. Электронные средства массовой информации, спутниковая связь, передовая тематика, обеспечивая практически мгновенную передачу информации во все уголки земного шара, создают состояние, ощущение одновременности. С развертыванием технологической и промышленной революций, индустриализации, а затем научно-технической революции второй половины ХХ века началось и интенсифицировалось убыстрение исторического и социального времени. Выигрыш времени стал смыслом научно-технического и социального прогресса. Но стремление к выигрышу времени оборачивается проблемой растущей нехватки времени, которое как бы постоянно сжимается. Чтобы компенсировать его нехватку приходится постоянно ускорять темп жизни. Настоящее быстро устаревает, время теряет непрерывность, становится хаотическим чередованием не связанных между собой моментов, отрезков. На смену понятиям потока и длительности времени приходят категории сиюминутности и точности. Время больше не течет, оно извергается. Прошлое и будущее сливаются в настоящее, которое также быстро устаревает. Для обозначения феномена убыстрения времени немецкий философ Г. Люббе ввел понятие «сокращение настоящего», обозначающее то, что в современной динамической цивилизации по мере возрастания количества инноваций в единицу времени уменьшается хронологическое расстояние до того прошлого, которое во многих отношениях уже устарело и поэтому для нас стало чуждым и даже непонятным. «Сокращение настоящего» связано с эффектом «темпорального сгущения инноваций», суть которого состоит в возрастании количества обновляющегося при одновременном возрастании количества устаревающего. В результате увеличения скорости устаревания науки растет число элементов, принадлежащих к настоящему и в то же время ставших достоянием вчерашнего и даже позавчерашнего дня. Этот феномен, описанный еще Ф. Шлегелем, Ф. Ницше, Г. Люббе назвал увеличением «неодновременности одновременного». Как отмечал Г. Люббе, вместе с динамикой науки и культуры растет степень ее музеефикации. Динамика цивилизации сопровождается прогрессирующей музеефикацией нашей цивилизации;
Дата добавления: 2015-07-02; Просмотров: 362; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |