Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Томск 2007 5 страница




Внутренняя структура эмпирического исследования. Рассматривая внутреннюю структуру эмпирического исследования, можно установить наличие двух подуровней: 1) наблюдения и эксперименты, позволяющие получить некоторые данные наблюдения; 2) познавательные процедуры, позволяющие перейти от данных наблюдения к эмпирическим зависимостям и фактам. Выделение этих подуровней связано с различием между данными наблюдения и эмпирическими фактами, что было установлено в позитивистской философии науки 20-30-х гг. ХХ века. Благодаря логике, эмпиризм приобрел в это время новое дыхание. С помощью новой логики представители позитивизма Л. Витгенштейн, Р. Карнап, Б. Рассел и др. полагали возможным редуцировать все знание, свести его к терминам наблюдения с помощью логико-математических средств. Особая скурпулезность в деле логической реконструкции чувственного опыта с целью добиться его «чистоты», и, таким образом, обеспечить прочность этого фундамента познания, характерна для исследований Р. Карнапа. Он вводит понятие «элементарный опыт», под которым подразумевается неорганизованный индивидуальный опыт в определенный момент времени. Главное отношение, связывающее множество элементарных опытов, есть припоминание сходства. Сходство элементарных опытов образует «круг сходства» из которого выводится понятие «чувственного качества». Это качество представляют элементарные опыты, образующие «класс качеств». Карнап пытался логически реконструировать известные пять чувств. Каждое чувство в его интерпретации – большой класс качеств, которые связаны друг с другом цепью сходств. Пять чувств отделены друг от друга разрывом в цепи. Каждое чувство имеет различное число измерений. Зрение, например, имеет пять измерений: два пространственных и три цветовых (оттенок, яркость, насыщенность). Измерения определяются математически. Затем двумерное визуальное поле проецируется на трехмерное пространство. Однако все эти блестящие и изощренные процедуры не привели Р. Карнапа к желаемым результатам.

В результате дискуссии относительно того, что может служить эмпирическим базисом науки, было отвергнуто предположение о том, что это непосредственные результаты опыта – данные наблюдения.

Данные наблюдения в языке науки выражаются в форме особых высказываний – записей в протоколах наблюдения, называемых протокольными предложениями. В протоколе наблюдения содержатся сведения о том, кто наблюдал, время наблюдения, описываются приборы, если они использовались в ходе наблюдения. Протокольные предложения формулируются в форме высказываний типа: «NN наблюдал, что после увеличения давления стрелка на приборе показывает цифру 7», «NN наблюдал изменение цвета раствора АВ в пробирке после увеличения концентрации вещества А».

В социологических опросах в роли протокола наблюдения выступает анкета с ответом опрашиваемого.

Анализ смысла протокольных предложений показал их отягощенность субъективными наслоениями, т.к. они содержат не только информацию об изучаемых явлениях, но и включают ошибки наблюдателя, приборов, воздействие внешних факторов и т.п. Как указывает М. Малкей, «один из фундаментальных выводов психологов состоит в том, что наблюдения никогда не могут быть столь пассивными, как того требует стандартная концепция науки»[28]. Жажда власти, денег, престижа и т.д. влияют на интеллектуальную предубежденность ученых. Кроме того, как отмечал еще Аристотель, удивление представляет собой важный фактор, активно влияющий на деятельность ученых. Поэтому проблема поиска и выявления форм эмпирического знания, которые бы имели интерсубъективный статус, содержали бы объективную информацию, нашла свое решение в выдвижении иного эмпирического базиса науки. В этом качестве выступает эмпирический факт.

Факты фиксируются на языке науки в форме высказываний типа: «ускорение, приобретаемое телом, зависит от действующей на него силы», «за прошедший календарный год в городе родилось больше мальчиков, чем девочек» и т.п. Различие между выражением данных наблюдения и эмпирического факта очевидно. Оно проходит по линии устранения влияния познающего субъекта на результаты наблюдения. Но именно здесь и возникает проблема, – каким образом возможно осуществление перехода от данных наблюдения к эмпирическим фактам, и что гарантирует объективный статус последних? Разработка этой проблематики в рамках позитивистской философии и методологии науки не привели к ее окончательному решению.

В работах отечественных философов науки, таких, как В.С. Степин, М.А. Розов, В.Г. Горохов, Г.И. Рузавин и др., представлен иной – деятельностный подход – к рассмотрению структуры и функций эмпирического познания и его подуровней.

Анализируя структуру и функции научного наблюдения, они установили его деятельностный характер, ибо проведение наблюдения предполагает его предварительную организацию и осуществление контроля в ходе этого процесса. Особенно отчетливо деятельностная природа эмпирического исследования проявляется при осуществлении наблюдения в ходе реального эксперимента. По традиции эксперимент противопоставляется наблюдению вне эксперимента, но В.С. Степин и др., не отрицая специфики этих двух видов познания, указывают на их общие родовые признаки, которые состоят в следующем:

во-первых, в деятельностном отношении субъекта к объекту в процессе осуществления наблюдения и эксперимента;

во-вторых, не только в эксперименте, но и в процессе научного наблюдения природа дана наблюдателю не в форме созерцания, а в форме практики. Исследователь всегда выделяет в природе или создает искусственно из природных материалов некоторый набор объектов, каждый из которых фиксируется по определенному набору признаков и используется в качестве средств наблюдения и эксперимента;

в-третьих, средства эксперимента и наблюдения (т.е. некоторый набор искусственно выделенных исследователем объектов) в соотношении с изучаемым объектом, составляют структуру систематического наблюдения и эксперимента, которая в процессе познания переходит от исходного состояния к конечному через взаимодействие изучаемого объекта со средствами наблюдения или эксперимента.

Что послужило основанием для подобных выводов?

1) Рассматривая предметную структуру экспериментальной практики, по мнению В.С. Степина, можно отметить ее представленность в двух аспектах: а) как взаимодействие объектов, протекающее по естественным законам и б) как искусственное, организованное человеком действие.

В первом аспекте мы можем рассматривать взаимодействие объектов как некоторую совокупность связей и отношений действительности, где ни одна из этих связей актуально не выделена в качестве исследуемой. В этом случае любая из них может выступать в качестве объекта познания. Учет же второго аспекта позволяет выделить ту или иную связь в ее соотношении с целями познания и, таким образом, зафиксировать ее в качестве предмета исследования. Тогда явно или неявно совокупность взаимодействующих в опыте объектов будет организовываться в систему определенных отношений, где целый ряд их реальных связей оказывается несущественным. Функционально выделяться будет лишь некоторая группа отношений, характеризующая изучаемую часть реальности. Т.е. проведение эксперимента в определенных познавательных целях требует от субъекта осуществления определенной организационной деятельности, направленной на искусственное ограничение проявлений, связей, взаимодействующих в опыте объектов.

Ставя перед собой некоторые познавательные цели, мы сталкиваемся с подобной ситуацией и в случае проведения наблюдения.

Научные наблюдения, будучи целенаправленно организованными, должны осуществляться на систематической основе, т.к. только в этом случае можно выделить те или иные закономерности в проявлении функциональных свойств объектов окружающей нас реальности. Случайные наблюдения, хотя и могут дать импульс открытию, должны затем переходить в систематические, чтобы стать основой выявления определенных закономерностей. Это необходимо по той причине, что мы имеем дело с постоянно изменяющейся реальностью и наше положение как наблюдателей также изменяется в пространстве и времени. В силу этого, осуществляя наблюдение, мы можем зафиксировать те или иные закономерности в проявлении функциональных свойств объектов только через осуществление систематических наблюдений, через выделение существенных, очевидных свойств объектов и абстрагирование от несущественных.

2) Очевидно, что и в эксперименте, и в наблюдении фиксация существенных свойств у взаимодействующих объектов возможна только на основе предварительного выверения этих свойств в ходе практического употребления на предмет выявления их у объектов. Проведение этой операции в последующем позволяет стабильно воспроизводить указанные свойства объектов как в условиях будущей экспериментальной ситуации, так и в ходе систематического наблюдения. Например, в экспериментах по изучению законов колебания маятника Земля выступает не просто как природное тело, а как своеобразный искусственно изготовленный объект человеческой практики, т. к. для природного объекта «Земля» данное свойство маятника – колебание – не представляет чего-то экстраординарного по сравнению с другими свойствами. Колебательное свойство маятника, существуя реально, выступает на передний план только в системе определенной человеческой практики.

Отсюда специфика эксперимента заключается в том, что эксперимент представляет собой форму природного взаимодействия фрагментов природы, которые представлены в нем как объекты с функционально выделенными свойствами. Более того, в развитых формах эксперимента такие объекты изготавливаются искусственно. К ним относятся прежде всего приборные установки, с помощью которых проводится экспериментальное исследование. Например, в современной ядерной физике это могут быть установки, испускающие пучки частиц, стабилизированных по определенным параметрам (энергия, поляризация, пульс); мишени, бомбардируемые этими пучками; приборы, регистрирующие результаты взаимодействия пучка с мишенью.

Подобная ситуация характерна и для процесса наблюдения. Например, уже в IV в. до н.э. в египетской и вавилонской астрономии появляется зодиак, состоящий из 12 участков по 30 градусов, как стандартная шкала для описания движения Солнца и планет[29]. Использование созвездий зодиака в функции шкалы делает их средствами наблюдения, своеобразным приборным устройством, позволяющим точно фиксировать изменение положения Солнца и планет. Причем по мере проникновения в астрономию математических методов градуировка небесного свода становится все более точной и удобной для проведения измерений.

3) Т.к. конечная цель естественно-научного исследования состоит в том, чтобы найти законы, вычленить существенные связи объектов, которые управляют природными процессами, и на их основе предсказать возможные состояния в будущем, то предметом исследования в глобальном плане выступают существенные связи и отношения природных объектов. На теоретическом уровне они отображаются в чистом виде через систему соответствующих абстракций. На эмпирическом уровне они изучаются по их проявлению в непосредственно наблюдаемых эффектах. Конкретизируя глобальную цель познания для каждого из его уровней - можно отметить, что в экспериментальном исследовании она выступает в форме специфических задач, которые сводятся к тому, чтобы установить, как некоторое начальное состояние испытуемого фрагмента природы в зафиксированных условиях порождает его конечное состояние. В целях решения такой локальной познавательной задачи вводится особый предмет изучения, в качестве которого выступает объект, изменение состояний которого прослеживается в опыте.

В случае проведения систематических наблюдений мы сталкиваемся с подобной же ситуацией. Выявление закономерностей является итогом сложного пути от случайной регистрации нового явления к выяснению основных условий и природы его возникновения через серию наблюдений. При этом организация серий систематических наблюдений, по сути, предстает в качестве квазиэкспериментальной деятельности, т.к. предполагает выделение свойств у объектов природы, которые будет описывать исследователь и четкую фиксацию объекта, изменение состояний которого будет изучаться в процессе наблюдения.

Специфика взаимодействия теоретического и эмпирического уровней знания в процессе познания. Здесь важно отметить следующее обстоятельство – осуществление систематических наблюдений предполагает использование теоретических знаний, ибо они являются условием определения целей наблюдения. На них опирается исследователь, когда пытается зафиксировать объекты со строго определенными свойствами, чтобы в дальнейшем осуществить наблюдения за их развитием и взаимодействием. По этому поводу английский социолог, философ науки М. Малкей отмечает, что результаты научного наблюдения во многом вызваны вполне конкретными специфическими действиями ученого, ибо «наблюдатель сам вызывает к жизни динамические последовательности сигналов и сам же реагирует на них»[30]. Результаты непосредственного наблюдения соотносятся учеными с уже заданными до опыта теоретическими представлениями и интерпретируются в соответствии с ними. Как отмечают В.С. Степин, Л.М. Томильчик, Г.И. Рузавин и др., в наибольшей степени эта зависимость обнаруживается в процессе формирования эмпирических зависимостей и фактов[31]. А, поскольку этот процесс предполагает элиминацию из наблюдений содержащихся в них субъективных моментов – ошибок наблюдателя, случайных помех, ошибок приборов и пр. – для получения достоверного объективного знания о явлениях, то подобный переход должен предполагать осуществление как минимум двух познавательных процедур:

Во-первых, рациональную обработку данных наблюдения и поиск в них устойчивого, инвариантного содержания. Она включает в себя процесс сравнения данных множества наблюдений, выделение в них повторяющихся признаков и устранения случайных возмущений и погрешностей, связанных с ошибками наблюдателя. Если в процессе наблюдения производились измерения с записью данных в виде чисел, то для получения эмпирического факта проводится статистическая обработка результатов измерений с целью поиска среднестатистических величин из множества данных. При этом необходимо отметить, что измерения позволяют более строго упорядочить, сделать более достоверной и достаточно однообразно понимаемой информацию об исследуемых процессах. Измерения позволяют ввести в исследования математику, которая представляет собой одну из важнейших форм выражения закономерностей бытия.

Если в наблюдении использовались приборные установки, то наряду с протоколами наблюдения составляется протокол контрольных испытаний приборов, где фиксируются их возможные систематические ошибки. Ошибки приборов учитываются при статистической обработке данных наблюдения. Они элиминируются из наблюдений в процессе поиска их инвариантного содержания. Благодаря этой операции не только достигается единство накопленного знания, но и увеличивается степень его достоверности;

Во-вторых, для установления факта необходимо истолкование выявляемого в наблюдениях инвариантного содержания, для чего используются ранее полученные теоретические знания.

Таким образом, в формировании факта участвуют теоретические знания, которые были ранее проверены независимо. При этом новые факты могут служить основой развития новых теоретических идей и представлений и, в свою очередь, превратившись в достоверное знание, быть использованы в процедурах интерпретации при эмпирическом исследовании других областей действительности и формировании новых фактов.

Подобная точка зрения о теоретической нагруженности эмпирического базиса нашла свое разнообразное концептуальное оформление в теории парадигм Т. Куна, научно-исследовательских программ И. Лакатоса и др.

Также можно найти массу примеров тесного взаимодействия эмпирического и теоретического знания и в истории становления научного познания. Один из подобных примеров, связанных с развитием электромагнитной теории, приводится Л. де Бройлем – известным французским физиком – в работе «По тропам науки» (М.,1962): «Как известно, серьезное внимание физиков к теории Максвелла было привлечено работами Генриха Герца. Герц не только придал теории Максвелла простую и стройную математическую форму, чем та, в которую облек ее автор, но с помощью известных опытов он установил, что электрические колебательные системы излучают электромагнитные волны, свойства которых полностью аналогичны свойствам световых волн, и таким образом подвел экспериментальную базу под гениальное предположение Максвелла, согласно которому световые волны являются лишь частной разновидностью электромагнитных волн, соответствуя некоторому интервалу значений длин волн»[32].

Отмечая ценность и экспериментального и теоретического начал познания, отечественный исследователь Ю.В. Сачков указывает на специфику их взаимного существования и взаимодействия, которая, по его мнению, заключается, с одной стороны, в их не сводимости друг к другу, а с другой, в их неотделимости друг от друга. «Опытное, экспериментальное начало практически представляет собою своеобразное чувственное анализирование действительности. Именно опыт представляет первичные, базовые данные (факты), которые образуют фундамент науки. Теоретический анализ имеет своей целью описать и объяснить опытные данные. Теория вскрывает связи в мире чувственных восприятий и тем самым придает им смысл. Активное взаимопроникновение опытного и теоретического начал в познании есть выражение того факта, что человек познает руками и головой на основе синтеза материального действия и свободно развивающейся мысли. Основным, наиболее значимым результатом подобного взаимодействия опытного и теоретического начал познания является разработка научной теории как относительно целостной и замкнутой системы знаний об исследуемых процессах»[33].

Подобная точка зрения характерна не только для отечественной философии науки. Ограниченные познавательные возможности эмпирического уровня научного познания проявили себя и стали очевидны еще древнегреческим философам. Они придали импульс поиску и обоснованию иных принципов познания. Известный исследователь науки Ст. Тулмин в своей работе «Человеческое понимание» (М.,1984) говорит о том, что поиск «беспристрастной рациональной точки зрения» было одним из исходных пунктов всей традиции западной философии. Уже Гераклит настаивал на том, что свидетельства чувств относятся только к частным моментам и положениям, а для того, чтобы судить о противоречиях в этих свидетельствах, мы нуждаемся в каких-то более постоянных теоретических принципах. «Если к тому же такая же изменчивость и случайность подрубают основы языка, как вслед за ним делал вывод Кратил, то мы вдобавок нуждаемся в каких-то более постоянных критериях, чтобы гарантировать общепринятые значения слов»[34]. Именно поэтому, отмечает далее Ст. Тулмин, «рациональная потребность в беспристрастной точке зрения остается настоятельной и законной. Выбор все еще остается выбором между применением превосходящей силы и уважением к нелицеприятной дискуссии, между авторитарным навязыванием мнений и внутренним авторитетом хорошо обоснованных аргументов»[35].

В значительной степени доминирование последнего обстоятельства обуславливает роль и значение, отводимую теории в научном познании.

Теоретический уровень научного знания. Переходя к анализу теоретического уровня познания изначально можно выделить в нем наличие двух подуровней.[36]

Первый уровень образуют частные теоретические модели и законы, выступающие в качестве теорий, раскрывающих сущность достаточно ограниченной области явлений.

Второй подуровень образуют развитые, общезначимые, фундаментальные научные теории, включающие частные теоретические законы в качестве следствий фундаментальных теорий.

Так, законы и теоретические модели, характеризующие отдельные виды механического движения: законы Кеплера о движении планет вокруг Солнца, законы Галилея о свободном падении тел и др. могут выступать в качестве примера теорий первого подуровня, а теоретические законы ньютоновской механики, обобщившие все эти теоретические знания, выступают в качестве примера развитых теорий, относящихся ко второму подуровню теоретических знаний.

Но, не следует полагать, что в теории присутствует линейная организация абстрактных объектов и, соответственно, уровней теоретического знания. Внутренняя организация сети теоретических конструктов, как показал один из известных зарубежных исследователей - Г. Маргенау, включает в себя различные, относительно самостоятельные подсистемы, взаимодействующие друг с другом. Вместе с тем, выделение указанных уровней связано с той ролью, которую играет та или иная сеть абстрактных объектов в определении специфики данной теории. Именно в соответствии с этим выделяется сеть объектов, образующих фундаментальную теоретическую схему, и сеть абстрактных объектов, образующих частные теоретические схемы, конкретизирующие фундаментальную схему и обеспечивающие переход от рассмотрения общих характеристик реальности к рассмотрению конкретных типов взаимодействия.

Кроме того, теоретическое знание на каждом своем подуровне представляет собой двухслойную конструкцию, состоящую из теоретической модели и формулируемого на ее основе теоретического закона.

Теоретическая модель представляет собой совокупность абстрактных объектов (теоретических конструктов, между которыми установлены строго определенные связи и отношения). Относительно этих абстрактных объектов теоретической модели и формулируются теоретические законы. Именно поэтому теоретический закон может быть использован при объяснении реальной ситуации опыта только в том случае, если теоретическая модель ранее была обоснована с точки зрения ее способности отображать существенные связи действительности, проявляющиеся в подобных ситуациях. С этой точки зрения обнаружение соотношения неопределенностей В. Гейзенбергом в 1927 г. демонстрирует пример обоснования теоретического факта на основе создания теоретической модели из абстрактных объектов. Это соотношение относится в своей простейшей форме к ситуации, когда мы имеем материальную частицу массой м, двигающуюся в пространстве, пусть это будет одномерное пространство R с координатой х, со скоростью υ. Тогда В. Гейзенберг доказал, что в квантовой теории, если мы пробуем измерить координату и скорость, мы не можем измерить их одновременно сколь угодно точно. Между ошибками измерения Δх и Δυ этих переменных существует взаимно-обратное соотношение, Δх´Δυ ≈ h/m, где h – постоянная Планка.

Постоянная Планка – это то, что характеризует наше вхождение в квантовый мир. Если она равняется нулю, то мы находимся в мире классической физики. Если она отлична от нуля, то мы попадаем в мир квантовых явлений. Предметы макро и мега миров настолько велики, что постоянная Планка может считаться равной нулю. Для электронов и атомов это уже неверно (так, для электрона h/m ≈ 1 см2 (сек). Наличие подобного соотношения связано с тем, что квантовые частицы одновременно проявляют и волновые свойства, при этом длина волны λ связана со скоростью υ частицы соотношением де Бройля: mυ = h/λ в которое входит постоянная Планка[37].

Таким образом, мы видим, что данное соотношение было выведено на основе построения теоретической модели, включавшей в свою структуру такие абстрактные объекты, как материальная частица, одномерное пространство, координата, постоянная Планка. На основе рассмотрения этой теоретической модели была выявлена закономерность Δх´Δυ ≈ h/m.

Интерпретация этой ситуации позволила Бору сформулировать новую, теоретически выведенную закономерность[38], состоявшую в том, что у нас есть разные приборы для измерения координаты и скорости. Но это не просто разные приборы. Измеряя либо одну переменную, либо другую, мы находимся в разных экспериментальных ситуациях, которые невозможно соединить вместе. Эти ситуации являются дополнительными: либо мы смотрим в микроскоп и как можно более точно локализуем, где находится частица, либо мы ставим дифракционную решетку и пытаемся измерить длину волны λ, чтобы найти скорость.

В качестве другого примера можно привести теорию атома водорода, выдвинутую Н. Бором в 1913 г. Хотя все основные свойства и зависимости между теоретическими объектами в процессе построения данной теории можно было выразить чисто математически с помощью трех постулатов Бора, для облегчения рассуждений была построена наглядная модель, в которой атом водорода напоминает солнечную систему, в которой вокруг ядра вращается единственный электрон.

Данные примеры демонстрируют одну характерную особенность теоретически развитых научных дисциплин, таких, как физика, химия и др. – это применение количественных методов исследования. Законы их теорий формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками – в форме связей между величинами, входящими в уравнение. При этом теоретическая модель, выполняя роль основы интерпретации той или иной математической формулы, тем самым позволяет посредством решения уравнений и анализа результатов развернуть содержание теоретической модели. Через выявление всего богатства связей и отношений, заложенных в теоретической модели, можно добиться получения новых знаний об исследуемой реальности.

Значительная роль, отводимая теоретическим моделям в процессе создания теорий и формулирования законов, их взаимосвязь с соответствующим математическим формализмом, требует отдельного выделения и рассмотрения. Поэтому такие модели обозначаются как теоретические схемы, ибо играют роль схем объектов, исследуемых в теории. Кроме того, во многом это необходимо сделать для того, чтобы отличить теоретические модели от других типов моделей (натуральных, аналоговых, знаковых, вероятностных и пр.[39]), некоторые из которых служат средством построения теории, но не включаются в ее состав.

В соответствии с указанными подуровнями теоретического знания можно говорить о теоретических схемах в составе фундаментальной теории и в составе частных теорий. Отличие их состоит в том, что в основании фундаментальной теории лежит теоретическая схема, построенная из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга. Относительно нее формулируются фундаментальные теоретические законы. Частные же теоретические схемы подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Например, механика отчетливо представлена несколькими относительно независимыми разделами: механика малых колебаний, вращения твердого тела и т.д., составляющих фундаментальную теоретическую схему. В свою очередь, каждый из разделов образован системой своих специфических объектов; в механике малых колебаний - это «амплитуда», «период колебания»; в механике твердого тела – «главный момент инерции», «мгновенная ось вращения» и др. Они образуют частные теоретические схемы.

Говоря о частных теоретических схемах, необходимо подчеркнуть специфику образующих их абстрактных объектов: 1) они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы, выступая как их модификация. Кроме того, в связи с тем, что теория не представляет собой линейной организации, то построение частных теоретических схем и связанных с ними уравнений может предшествовать образованию развитой фундаментальной теории. Более того, как отмечает В.С. Степин[40], возможно параллельное существование частных теоретических и фундаментальных теоретических схем, описывающих одну и ту же область взаимодействия, но с альтернативных позиций. Это, например, характерно для периода становления электромагнитной теории (См: Кун Т. Структура научных революций. М.,1977.), когда было выдвинуто множество теорий, объяснявших явления электричества и магнетизма. Например, Фарадея, схема которого базировалась на идеи близкодействия и Ампера, основывавшейся на принципе дальнодействия.

Альтернативные схемы, как это было показано в работах отечественных и зарубежных исследователей: Т. Куна, В.С. Степина и др., после образования фундаментальной теории или отбрасываются, или включаются в ее состав в трансформированном виде;

2) одни из них играют роль основных объектов теории, другие могут вводиться относительно независимо от остальных абстрактных объектов частной теории.

Таким образом, развитая научная теория представляет собой сложную, иерархически организованную систему теоретических схем и законов.

Функции научной теории. Свое конкретное проявление научная теория находит в тех функциях, которые осуществляются с ее помощью в процессе научного познания. Можно обеспечить несколько, наиболее важных функций теории, это: 1) информационная, 2) систематизирующая, 3) прогностическая, 4) объяснительная.

1) Информативная функция теории выражается в получении необходимой информации об окружающем мире, что составляет задачу всякого процесса научного исследования, будь то наблюдения, эксперимента или теоретического рассуждения. Но специфика информационной функции теории заключается в том, что посредством нее устанавливается внутренняя, необходимая связь между различными эмпирическими законами. В результате этого становится возможным предсказать не только факты и явления, которые можно было бы предвидеть на основе только эмпирических законов, но и ранее неизвестные факты. Устанавливая корреляции между эмпирическими законами, теория дает возможность определить ту избыточную информацию, которая содержится в отдельных законах. Именно поэтому предсказания, вытекающие из теории, значительно более эффективны, чем предсказания, сделанные на основе эмпирических фактов. Таким образом, теория предоставляет дополнительное количество информации для дальнейшего развития познания.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 350; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.046 сек.