Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Получение когерентных пучков делением амплитуды. Интерференция в тонких пленках. Полосы равного наклона и равной толщины. Кольца Ньютона




Происхождение интерференционной картины и способ ее получения определяет вид и зависит от способа.

Рассмотрим интерферирующее устройство, представляющее собой слой прозрачного диэлектрика с частично пропускаемыми и отражаемыми поверхностями, в котором возникает геометрическая разность хода при произвольном угле падения света на это устройство.

К такому типу интерферометров относятся плоско-параллельные и клиновидные пластины (тонкие пленки, кольца ньютона) и интерферометры, расщепляющие пучки света с помощью зеркал (интерферометр Фабри-Перо)

Различают 3 вида интерференционных полос, которые получаются при следующих условиях:

1. Полосы равного наклона, которые возникают между параллельными пучками света, которые после прохождения интерферометра приобретают определенную разность хода.

{ λ=const }

{ Δ=const } угол φ меняется

2. Полосы равной толщины, возникают в том случае, если интерферирующие пучки после прохождения интерферометра имеют реальное и мнимое пересечение в пространстве изображений.

λ=const}

φ=const} Δ меняется

3. Полосы равного хроматического порядка.

φ =const}

Δ =const} λ меняется

Достаточно сложные амплитудные системы, в которых требуется очень точное измерение толщины плоскопараллельной пластины или воздушных зазоров.

 

Рассмотрим ход луча в плоско-параллельной пластинке

Экран надо располагать в фокусе.

Пусть n1=1,n2=n;

Δ = |AE|

Δ = (AB+BC)

Δ = (AB+BC)n-AE-λ/2 – с учетом потери половины волны в точке А, так как n1=1>n2=n

Если будет выполняться противоположное условие, то потеря λ/2 будет переходить в точку B и «-λ/2» меняется на «+λ/2»

AB=BC=d/cosΘ }

AE=AC*sinφ,sinφ=n*sinΘ} Δ=2nd*cosΘ-+ λ/2

max: Δ=mλ,2k*λ/2;m=0,+-1,+-2…;k=0,+-1,+-2..

min: Δ=(2k+1)*λ/2

Если на пластинку падают не параллельные пучки света, то интерферирующие пучки будут иметь все возможные направления распространения и при заданной толщине d и заданном показателе преломления n каждому углу падения φ будет соответствовать своя интерференционная картина, поэтому такие полосы будут называться полосами равного наклона.

 

При оксиально симметричном распространении падающих пучков, линии равного наклона являются окружностями.

 

Даже если источник света протяженный и различные его точки излучают не когерентно, то интерференционная картина зависит лишь от угла падения => конечность размеров источника не смазывает картину полос равного наклона.

 

Полосы равной величины


В световом потоке, исходящем из источника S монохроматического света всегда присутствует волна 2, интерферирующая в точке C с волной 1, прошедшей по пути SABC. Если источник расположен достаточно далеко от поверхности клина и угол между поверхностями клина достаточно мал (эти условия на практике при изучении такой схемы интерференции, как правило, выполняются), то оптическая разность хода приблизительно определяется при прочих равных условиях толщиной клина в точке C и высчитывается по той же формуле, что и для плоско-параллельной пластинки. Δ=2nd*cosΘ-+ λ/2

Однако в этом случае интерференционная картина локализована на верхней поверхности клина. Интерференционную картину можно также наблюдать и с помощью линзы на экране. В этом случае поверхность проецируется на экран наблюдения. Линии одинаковой интенсивности совпадают с линиями постоянной толщины пластины, поэтому соответствующие интерференционные полосы называются полосами равной толщины.

Кольца Ньютона.

Примером интерференционной схемы, в которой наблюдаются полосы равной толщины, является воздушная прослойка, образованная между плоской поверхностью стекла и положенной на нее плосковыпуклой линзой (или наоборот)

В этом случае линии равной толщины – окружности, поэтому интерференционная картина имеет вид концентрических колец. Потеря полволны происходит на нижней поверхности воздушного клина.

Если h – толщина воздушного клина в точке минимума картины (темное кольцо), R – радиус кривизны линзы, то r этого 2 кольца определяются так:

r2=R2-(R-h)2

считая, что h/r <<1, то h=r2/(2r)

rm=√Rλm, m=0,+-1,+-2…

Эти концентрические окружности называются кольцами Ньютона. Интерференционная картина наблюдается как в отраженном, так и в пройденном свете. Если в отраженном свете – max, то в проходящем в данной точке – min.

Интерференционная картина может наблюдаться и в белом свете (полосы будут цветными)

Все интерференционные картины, которые рассмотрены выше, соответствую двулучевой интерференции, но можно наблюдать и многолучевую интерференцию,

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 869; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.