Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частный случай: моделирование дуополии




Основные предпосылки

Модель Штакельберга

Модель Штакельберга — теоретико-игровая модель олигополистического рынка при наличии информационной асимметрии. Названа в честь немецкого экономиста Генриха фон Штакельберга, впервые описавшего ее в работе Marktform und Gleichgewicht (Структура рынка и равновесие), вышедшей в 1934 г.

В этой модели поведение фирм описывается динамической игрой с полной совершенной информацией, что отличает её от модели Курно, в которой поведение фирм моделируется с помощью статической игры с полной информацией. Главной особенностью игры является наличие лидирующей фирмы, которая первой устанавливает объём выпуска товаров, а остальные фирмы ориентируются в своих расчетах на нее.

1. Отрасль производит однородный товар: отличия продукции разных фирм пренебрежимо малы, а значит, покупатель при выборе, у какой фирмы покупать, ориентируется только на цену

2. Фирмы устанавливают количество производимой продукции, а цена на неё определяется исходя из спроса.

3. Существует так называемая фирма-лидер, на объём производства которой ориентируются остальные фирмы.

Пусть существует отрасль с двумя фирмами, одна из которых «фирма-лидер», другая — «фирма-последователь». Пусть цена на продукцию является линейной функцией общего объема предложения Q:

.

Предположим также, что издержки фирм на единицу продукции постоянны и равны с 1 и с 2 соответственно. Тогда прибыль первой фирмы будет определяться формулой

,

а прибыль второй соответственно

.

В соответствии с моделью Штакельберга, первая фирма — фирма-лидер — на первом шаге назначает свой выпуск Q 1. После этого вторая фирма — фирма-последователь — анализируя действия фирмы-лидера определяет свой выпуск Q 2. Целью обеих фирм является максимизация своих платёжных функций.

Равновесие Нэша в этой игре определяется методом обратной индукции. Рассмотрим предпоследний этап игры — ход второй фирмы. На этом этапе фирма 2 знает объем оптимального выпуска продукции первой фирмой Q 1*. Тогда задача определения оптимального выпуска Q 2* сводится к решению задачи нахождения точки максимума платёжной функции второй фирмы. Максимизируя функцию Π2 по переменной Q 2, считая Q 1 заданным, находим, что оптимальный выпуск второй фирмы

.

Это наилучший ответ фирмы-последователя на выбор фирмой-лидером выпуска Q 1*. Фирма-лидер может максимизировать свою платёжную функцию, учитывая вид функции Q 2*. Точка максимума функции Π1 по переменной Q 1 при подстановке Q 2* будет

.

Подставляя это в выражение для Q 2*, получим

.

Таким образом, в равновесии фирма-лидер производит в два раза большее количество продукции, нежели фирма-последователь.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 587; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.