Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

С тренировкой гибкости




И ДРУГИЕ ФАКТОРЫ, СВЯЗАННЫЕ

НЕВРОЛОГИЧЕСКИЕ

Считается, что прирост мышечной силы обусловлен двумя основными факторами. В то время как мышечная гипертрофия (увеличение размера) имеет место на более поздних этапах тренировочного процесса (Enoka, 1988; Komi, 1986; Sale, 1986), прирост силы, достигаемый в пер-


Глава 6. Нейрофизиология гибкости: невральная анатомия и физиология



Сила б НФ= ^-В х100%

Улучшение соотношения E/F Никаких изменений в активации

о—о До тренировок

*f Повышенная

Соотношение ** E/F не изменилось

/ |активация

>* х- -х После тренировок

В-А С-А
МГ =

х 100 %


Рис. 6.11. Вклад невральных факторов (а) и мышечной гипертрофии (б) в прирост мышечной силы вследствие тренировочных занятий силовой направленности; оценка вклада (в) невральных факторов (НФ) и мышечной гипертофии (МГ), % (Moritani, de Vries, 1979)

вые недели тренировочных занятий, отражает повышенную способность активации мотонейронов и, следовательно, имеет невральное происхождение (рис. 6.11). Результаты многочисленных исследований указывают на то, что вскоре после начала тренировочных занятий силовой направленности происходят невральные изменения. Произвольная сила быстро увеличивается прежде, чем мышцы гипертрофируются (Ikai, Fukunaga, 1970; D.A.Jones, Rutherford, 1987; Tesoh, Hjort, Balldin, 1983) и произойдет увеличение напряжения, обусловленное действием электрических сил (Davies, Young, 1983). Этот начальный прирост силы сопровождается увеличением интегрированной ЭМГ (Komi, 1986; Sale, 1986) и интенсификацией рефлексов (Sale и др., 1982; Sale, Upton, McComas, MacDougall, 1983).

Что же обусловливает начальное увеличение уровня гибкости в первые недели тренировочных занятий? Влияет ли тип тренировочных занятий (баллистические, статические и т.п.) на сущность этих изменений? Исследования показывают, что у танцоров по сравнению с обычными людьми некоторые рефлексы подвергаются модификации (Goode и Van Hoven, 1982; Nielsen, Crone, Hultborn, 1993). Однако это может быть не связано с невральными факторами. По мнению Кочея, Бурк и Кемен (1991), продолжительные тренировки могут привести к изменению состава соединительного сухожилия, что может повлечь уменьшение нагрузки на аппарат нервно-мышечного веретена. Бирду (1973) удалось показать, что тренировочные занятия аэробной направленности вызывают меньшую степень напряжения на единицу площади поперечного сечения в сухожилиях хвоста крыс. Этот факт указывает на большую фракцию растворимого коллагена. Виидику (1973) удалось продемонстрировать, что растянутое сухожилие проявляет тенденцию оставаться в таком состоянии. Следовательно, любая последующая нагрузка на сухожилие приведет к передаче в мышцу меньшей силы.


Наука о гибкости

Что касается поставленного нами вопроса, то ему было посвящено всего одно исследование. Стивене с коллегами (1974) протестировали 232 студента (физвоспитание), выявив 15 испытуемых, имевших наиболее податливую группу мышц подколенных сухожилий, и 15 испытуемых с наиболее жесткой группой. Они обнаружили более мощную ЭМГ-активацию в структурах растяжения подколенных сухожилий и других мышц, а также более раннее начало (последние 40° растягивающего движения) и более продолжительную активность рефлекса мышечного растяжения у лиц с более жесткими группами мышц. У испытуемых с более податливой группой мышц активация рефлекса растяжения приходилась на последние 20° растягивающего движения. Эти данные «говорят в пользу гипотезы о более высокой чувствительности нервно-мышечных веретен, большей возбудимости, направленной вниз цепи веретен, или о повышенной гамма-активности у лиц с более жесткой группой мышц».

В другом исследовании Стивене с коллегами (1977) использовали вибрацию (чтобы вызвать тонический вибрационный рефлекс), действующую на сухожилие двуглавой мышцы плеча в течение 2 мин с последующим растяжением. Средняя интегрированная ЭМГ в группах существенно не отличалась. Вместе с тем

«... только у лиц с более жесткими группами мышц повторяющиеся растягивающие движения вызывали снижение градиента максимального угла и момент начала растягивающей деятельности (т.е. рефлекс растяжения начинался позже как функция повторяющихся растягивающих движений)».

По мнению ученых, эти результаты «могут указывать на то, что упру-говязкие компоненты жесткой мышцы изменяются в результате растягивания, тогда как неврологические компоненты остаются без изменений». У более гибких испытуемых подобные тенденции не наблюдались.

Следует упомянуть еще о двух недавно проведенных исследованиях. Вуйнович и Доусон (1994) наблюдали значительное влияние пассивного мышечного растяжения на снижение активности нейронов в спинальном сегменте L5-S1 в результате как статического, так и баллистического растяжения, что коррелирует с более высоким уровнем гибкости. Хальбертсма и Гекен (1994) проанализировали гипотезу, согласно которой упражнения на растягивание удлиняют подколенные сухожилия, изменяя эластичность мышц. Результаты показали, что небольшое, но значимое увеличение растяжимости подколенных сухожилий сопровождалось значительным увеличением растягивающей силы, которую могли выдержать пассивные мышцы подколенных сухожилий. Уровень эластичности, однако, остался таким же. Был сделан вывод, что «упражнения на растягивание не удлиняют подколенные сухожилия и не делают их менее жесткими, а только влияют на толерантность к растяжению».

Применение терапевтического растягивания способствует увеличению амплитуды движения. Это объясняется механическим удлинением мышцы и соединительной ткани, а также снижением уровней нейронной


Глава 6. Нейрофизиология гибкости: невралъная анатомия и физиология

активности. Необходимо провести дополнительные исследования, чтобы определить, в какой степени оно модифицирует упруговязкий компонент мягких тканей и невральные реакции у различных групп населения, а также выявить наиболее эффективные методы, обеспечивающие необходимые результаты.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 345; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.