Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Жизненного цикла интеллектуальных систем




Методологии создания и модели

 

В настоящее время в области разработки и реализации интеллектуальных систем сложилось следующее положение: с одной стороны, квалификация коллективов разработчиков здесь, как правило, достаточно высока, чтобы считать классичес­кие положения технологии разработки ПО, обсуждавшиеся выше, естественным компонентом работы. С другой стороны, жизненно важными технологические ас­пекты создания интеллектуальных систем становятся, лишь, когда такие системы выходят на уровень промышленных разработок. Создание и внедрение интеллек­туальных систем общения с промышленными базами данных, систем машинного перевода нового поколения, интеллектуальных систем автоматического синтеза программ и особенно экспертных систем, по существу, и выдвинуло проблему технологической поддержки разработок в области ИИ на передний план [SIG-SOFT, 1986].

На фоне вышеописанной ситуации обращает на себя внимание тот факт, что име­ются только единичные примеры инструментальных систем, которые бы поддер­живали некоторую четко провозглашенную технологию разработки ПО и опира­лись бы на достаточно развитые системы представления знаний [Ramamoorthy et al., 1987]. Учитывая это, в данном параграфе рассматриваются технологичес­кие аспекты и методологии создания интеллектуальных систем в свете введен­ных выше понятий технологии программирования, а в следующих - инструмен­тарий для разработки систем ИИ.

Стиль программирования систем искусственного интеллекта существенно отли­чается от стиля программирования с использованием обычных алгоритмических языков. При этом почти каждая подобласть области ИИ характеризуется своим собственным стилем программирования, не всегда адекватным для других прило­жений. В табл. 6.1 приведены некоторые характерные отличия между обычными программными системами и системами ИИ [Ramamoorthy et al., 1987].

 

 

Таблица 6.1. Отличия систем ИИ от обычных программных систем

Характеристика программирование Программирование в СИИ Традиционное
Тип обработки Символьная Числовая
Методы Эвристический поиск Алгоритм
Задание шагов решения Неявное Точное
Искомое решение Удовлетворительное Оптимальное
Управление и данные Перемешаны Разделены
Знания Неточные Точные
Модификации Частые Редкие

 

 

Но ввиду все возрастающего использования систем ИИ в конкретных приложе­ниях, к ним начинают предъявляться практически те же требования, что и к тра­диционным программным комплексам и системам. В связи с этим становится весьма актуальной поддержка жизненного цикла программ в ИИ. К основным этапам в этом случае относятся инженерия требований, тестирование на прото­типах и сопровождение.

Как и в случае обычных программных систем, разработка системы ИИ должна начинаться с формулирования полных, непротиворечивых и однозначных требо­ваний к ней [Basih et al., 1984]. При проектировании должны использоваться принципы технологии разработки ПО - такие, например, как сокрытие инфор­мации, локализация и модульность. Предполагается, что система должна проек­тироваться как композиция уровней. Любой уровень должен быть чувствителен лишь к нижележащим уровням. Такое проектирование упрощает не только реа­лизацию, но и тестирование.

Тестирование ПО ИИ отличается от тестирования обычных систем, так как для первых характерно недетерминированное поведение вследствие использования стратегии разрешения конфликтов, зависящей от параметров периода исполне­ния программы. Поэтому единственным эффективным способом тестирования систем ИИ является прототипизация.

Фаза сопровождения, включающая выполнение самых различных модификаций системы, является важнейшим этапом процесса разработки любой системы, но имеет свою специфику для систем ИИ. Здесь база знаний - наиболее динамич­ный компонент и меняется в течение всего жизненного цикла. Поэтому сопро­вождение интеллектуальных систем - серьезная проблема. Но именно вопросам сопровождения уделяется мало внимания, хотя в обычном программировании имеются средства, которые могли бы быть адаптированы и для случая ПО ИИ. Это, например, системы управления версиями, системы управления конфигура­цией и системы модифицирующих запросов.

Таким образом, создание ПО систем, основанных на знаниях, имеет как общие моменты с разработкой традиционных систем ПО, так и свою специфику, кото­рая явным образом должна отражаться в соответствующих моделях жизненного цикла.

В недавнем прошлом полигоном для создания и испытания таких моделей явля­лись экспертные системы (ЭС).

В ходе работ по созданию ЭС практически сложилась определенная технология, включающая следующие основные этапы: идентификацию, концептуализацию, формализацию, реализацию и тестирование [Попов, 1987; Уотерман, 1989]. На этапе идентификации определяются задачи, подлежащие решению, выявля­ются цели разработки, ресурсы, наличие экспертов, готовых и способных передать свои знания проектируемой ЭС, категории и требования будущих пользователей. Концептуализация необходима для проведения содержательного анализа пред­метной области, в процессе которого выделяются используемые понятия и их взаи­мосвязи, определяются методы решения задач, и подробно обсуждалась в преды­дущих главах.

На этапе формализации определяются способы представления всех типов знаний, специфицируются выделенные ранее понятия, фиксируются способы интерпре­тации знаний, моделируется работа системы, и оцениваются полученные резуль­таты.

Этап реализации предполагает создание программной обстановки, в которой бу­дет функционировать будущая система, и наполнение экспертом базы знаний, а на этапе тестирования эксперт и инженер по знаниям в интерактивном режиме, используя, в частности, объяснения, проверяют компетентность ЭС. В заключение на этапе тестирования проверяется пригодность ЭС для конечных пользователей.

Понятно, что процесс создания ЭС не сводится к строгой последовательности выполнения вышеперечисленных этапов. В ходе разработки происходят много­численные возвраты к предыдущим этапам и решения, принятые там, пересмат­риваются. Все это существенно снижает общую эффективность разработки конк­ретной системы и позволяет сделать вывод о том, что модель жизненного цикла, соответствующая такой технологии, имеет мало шансов на промышленное ис­пользование.

Это, конечно, не означает, что ЭС, разработанные в рамках такой методологии, практически бесполезны или их проектирование вообще невозможно. Обычно таким образом создаются небольшие автономно функционирующие ЭС первого поколения.

Промышленная технология создания ЭС включает три фазы (или, если быть точнее, технологии): проектирование, реализацию и внедрение. Жизненный цикл разработки, охватываемый этой технологией или совокупностью технологий, состоит из 6 этапов: исследование выполнимости проекта; разработка общей кон­цепции ЭС; разработка и тестирование серии прототипов; разработка и испыта­ние головного образца; разработка и проверка расширенных версий системы; при­вязка системы к реальной рабочей среде.

На фазе проектирования проект инициализируется, формируется группа разра­ботчиков, определяются требования к будущей ЭС, проводятся исследования выполнимости проекта и вырабатывается общая концепция будущей системы. Остальные фазы данной технологии, по мнению [Микулич, 1990], ближе к тех­нологии Уотермана (Waterman) и направлены на реализацию разработанной концепции в виде серии прототипов, последовательно приближающихся к тре­буемой ЭС. Последний из прототипов и приобретает статус головного образца, который устанавливается будущим пользователем в реальную операционную среду.

Нетрудно понять, что первые два этапа промышленной технологии соответству­ют этапу идентификации; следующие три - этапам концептуализации, форма­лизации, реализации и тестирования. Новым и вместе с тем естественным для промышленной технологии является здесь этап привязки системы к реальной рабочей обстановке.

Недостатком и той и другой технологии является то, что в действительности это лишь более или менее структурированный набор методических рекомендаций, к отдельным элементам которого, в лучшем случае, привязаны те или иные инст­рументальные средства. И можно сказать, что сегодняшнее состояние здесь бли­же к описательному, чем к естественно-научному. А это влечет за собой наличие интерпретаций методологических рекомендаций, которые могут быть настолько различными, что теряется сама идея технологии. Таким образом, самым важным на данном этапе является создание операциональных моделей технологии разра­ботки интеллектуальных систем. И здесь, по нашему мнению, хорошим приме­ром могут послужить модели экспертизы, уже разработанные в рамках исследо­ваний по приобретению знаний.

Приобретение знаний, как уже неоднократно отмечалось выше, является ключе­вой задачей во всех технологиях построения систем, основанных на знаниях (СОЗ). Существует распространенный принцип, согласно которому производи­тельность СОЗ находится в прямой зависимости от количества знаний, содержа­щихся в системе [Feigenbaum, 1977]. Более 15 лет, с момента появления извест­ной программы TIERESIAS [Davis, 1984], исследователи в области ИИ рассмат­ривают приобретение знаний как задачу переноса знаний эксперта в БЗ системы, что чрезвычайно важно для создания действующей системы. Но в настоящее время работы в области приобретения знаний становятся важными и с точки зрения использования полученных здесь результатов для создания интеллекту­альных технологий разработки самих СОЗ.

Первое поколение методик для СОЗ базировалось на подходах двух типов: по­этапном и прототипном.

Поэтапный подход связан с представлениями о жизненном цикле [Buchanan et al., 1983; Guida et al., 1989] и соответствующей поддержке его основных стадий.

В прототипном подходе первого поколения [Grover, 1983; Wielinga et al, 1988] процесс приобретения знаний может не отрабатывать все стадии, так как основ­ным предположением здесь была возможность раскрытия структуры области экс­пертизы на раннем этапе проектирования на основе сравнительно небольшого анализа. Во втором поколении СОЗ-методик признана сложность процесса при­обретения знаний, преодоление которой видится в моделировании экспертизы. В данной области были предложены такие методики, как онтологический анализ [Alexander et al., 1987], концептуальные графы Sowa [Clancey, 1985], подходы, ос­нованные на обобщенных (родовых) задачах [Chandrasekaran, 1985], и концепту­альное моделирование, например KADS-методология [Breuker et al., 1986]. Ме­тодики приобретения знаний обсуждаются в огромном числе работ и, в част­ности, в предыдущих главах настоящей книги. Не имея места для их сколько-нибудь полного анализа, сошлемся здесь лишь на обзоры [Wielinga et al., 1988; Молокова, 1992; Осипов, 1993] и перейдем к инструментальным средствам под­держки разработки интеллектуальных систем.

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 564; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.