Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Золотое число Ф является числом иррациональным, т.е. таким числом, бесконечная последовательность которого не может быть вычислена до конца сколько бы времени его ни вычисляли




ЭЛЕМЕНТЫ ЗОЛОТЫХ ПРОПОРЦИЙ

Откуда возникли представления о делении отрезков в крайнем и среднем отношениях, позволяющем получать золотое число Ф и пропорцию, названную Леонардо да Винчи «золотым сечением», нам неизвестно. Но уже в Древней Греции на основе золотого числа Ф - 1,618 посредством последовательного умножения (восходящая ветвь ряда) и деления (нисходящая ветвь ряда) базисной единицы на число Ф получали ряд из 11 чисел, имеющий название «золотого ряда», бесконечного в обе стороны:
...; 0,034; 0,056; 0,090; 0,146; 0,236; 0,382; 0,618; 1,000; 1,618; 2,618; 4,236;... и т.д.

Каждое число этого ряда представляет собой иррациональную (бесконечную) последовательность цифр, округленных до 4 знаков. Каково собственное значение этих чисел и к какой геометрии они относятся — неизвестно тоже, а потому числа эти стоят на обочине и геометрии, и физики.

Однако уже древние греки поняли, что есть в этих числах какая-то особенность, проявляющаяся в том, что объекты, построенные с учетом золотых пропорций, обладают высокими эстетическими качествами и благотворно влияют на человека. И в наше время обнаруживается, что все процессы, связанные с жизнедеятельностью живых организмов, в той или иной степени связаны с теми же золотыми числами, что и обусловливает все более интенсивное изучение этих связей, но, как это ни странно, не свойств и геометрии самих чисел. А они настолько удивительны, что следовало бы поподробнее познакомиться с ними. Один из элементов этих свойств — образование золотого прямоугольного треугольника. Об этом наше изложение.

Прежде всего рассмотрим, что же дает нам деление отрезка в крайнем и среднем отношениях (рис.7). Отмечу, что в постановке задачи говорится о делении одного отрезка на две неравные части а и с так, чтобы весь отрезок (а + с) относился к большей части с, как часть с к меньшей части а. Запишем это отношение:

а + с   с (1)
------- = --  
с   а

Пропорция (1) носит название золотой пропорции.

Отметим, что в данном случае подразумевается конечная в рациональных числах длина отрезка (а + с), кратная некоторому измерительному инструменту. В условии задачи не говорится о невозможности его целочисленного или дробного рационального деления и о нерациональности двух (?) образующихся при делении отрезков.

Это очень важная оговорка. Она подтверждает не преднамеренный, а как бы вероятностный или даже случайный характер деления. Проверим эту случайность. Решим (1), заменив отношение с:а на b:

b = с:а. (2)

Подставим (2) в (1), получим квадратное уравнение:

b2-b -1=0, (3)

решая которое, находим величину b:

b1 = (1 + 5)/2 = Ф = 1,61...; (4)
b2 = (1- 5)/2 = - 1/Ф = - 0,61...

Отмечу на будущее очень важное обстоятельство, всплывающее в отношении (4) при рассмотрении числа 5. Это ординарное число однозначно указывает на свое положение в геометрии прямоугольных фигур. Оно и корень из него, равный 2,23606..., «помнят» о том, что являются гипотенузой прямоугольного треугольника, у которого одна сторона равна двум единицам измерения, а вторая одной. «Помнит» она и о том, что данная гипотенуза является одновременно и диагональю прямоугольника, построенного на тех же сторонах. Или, по-другому, этот прямоугольник «складывается» из двух квадратов, а посему И.Шмелев [8] дал ему название «двусмежный квадрат» (ДК). Получив Ф и обратную его величину, т.е. два числа, мы успокаиваемся, так и не определив, чему же равны числа a и с в формуле (1) и какое отношение они имеют к b, тем более, что подстановка b в (2) с последующим выходом на (1) не приводит к определению величин а и с, а следовательно, и не решает поставленную задачу.

Тогда зачем же мы находим b? Ответ — только для того, чтобы получить точную величину Ф, поскольку мы уже знаем, что это число — основа золотой пропорции. Но что скрывает это число? В чем суть золотой пропорции?

Попробуем решить (1) другим путем. Умножим числитель и знаменатель левой части отношения (1) на a, правой части на с и, сократив знаменатели, получаем следующее уравнение:

а2 + ас = с2. (5)

Приравнивая произведение ас к b2:

b2 = аc, (6)

подставляя в (5) b2 вместо ас, получаем уравнение Пифагора:

a2 + b2 = c2 (7)

в котором b2 отображает большой катет прямоугольного треугольника. И, следовательно, деление в крайнем и среднем отношениях есть деление не на два отрезка, а на три в пропорциях прямоугольного треугольника, в котором число b = Ф неявно занимает место одного из катетов. И вместо длин двух отрезков мы получаем три длины, образующих новое геометрическое качество — прямоугольный треугольник. Отношения (2) и (6) свидетельствуют о существовании еще одного числа i, кратного а, b, с. Для получения г возведем в квадрат (2) и, подставляя в него значение b 2 из (6), имеем:

а2 х ас = с2, (8)
c = a3.

Подставляя величину с из (8) в (2), получаем:
b= a2

И окончательно:
а6 - b3 = с2.

Поскольку b имеет два значения b1 =1,618 и b2 = 0,618, то по ним находим i1 i2:
i1 =b13 = (1,618)3 = 4,2358...,
i2 = b23 =(0,618)3 = 0,236....

Извлекая из i1 и i2 корень шестой степени, получаем количественную величину a1 a2:
а1 - 6 i 1= 6 4,236 = 1,272,

а2 = 6 i 2 = 6 0,236 = 0,786.

После извлечения квадратного корня из чисел г, находим значения с:
c1 = i 1= 2,058
c2 = i 2 = 0,4858.

Констатируем, что в результате полного решения пропорции (1) мы получили 8 чисел, и кажется, что четыре из них — 0,4858; 0,786; 1,272; 2,058 — лишние. Зачем они нужны, если не входят в золотой ряд, и что собой символизируют? Попробуем определиться, но сначала выясним, какой модуль по длине, рациональный или иррациональный, имеет отрезок, делимый в крайнем и среднем отношениях:
с+ а = 3,33019... = а5.

Таким образом в среднем и крайнем отношениях делятся только иррациональные отрезки. А это может обозначать одно — все естественные отрезки сами по себе и сами для себя имеют свою иррациональную метрику, несоизмеримую со стандартной метрикой.

Полученные выше двойные иррациональные числа а, в, с являются элементами единого степенного ряда, восходящего с основанием а1 = 1,272 от базисной единицы 1 и нисходящего с основанием а2 = 0,768 от той же базисной единицы 1. Числа а1, b1, c1, если им придать функции отрезков-сторон, образуют, как и числа а1, b1, c1, прямоугольные треугольники. Причем образовавшиеся треугольники будут подобны.

Существование чисел-сторон, способных образовывать единственный в золотом ряду прямоугольный треугольник, не может быть случайностью. Похоже, что он выполняет какую-то неизвестную нам функцию, определяемую степенями чисел ряда, в котором он образуется.

Отмечу еще раз, что невозможно получить точное значение иррациональных чисел золотого ряда как бы долго мы ни производили их вычисление, И это заставляет прерывать процесс вычисления с некоторой степенью точности, которая устраивает нас по условиям задачи. Прерывая вычисления, мы не прерываем процесса. В результате округления до определенной величины образовавшееся число, с одной стороны, «помнит» свое место в ряду (память числа [9]), с другой, уже как бы не является числом, а представляет собой некоторое абстрактное отображение незаконченного бесконечного процесса. И поэтому можно считать, что ряд золотых чисел есть совокупность взаимозависимых, непрерывных процессов. Процессов, отображающих некоторые формы движения природных систем.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 492; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.