КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энергосбережение в системах освещения
Во всем мире на наружное, бытовое и производственное освещение затрачивается значительная часть производимой электроэнергии. Для России актуальность решения задачи снижение затрат на искусственное освещение определяется большим расходом электроэнергии в расчете на миллион жителей (более чем в 1,5 раза, чем в Великобритании и Японии) и наличием дефицита электроэнергии в ряде регионов страны. Экономия электрической энергии при освещении может быть достигнута как за счет уменьшения установленной мощности, так и за счет уменьшения времени использования осветительного оборудования. Приведем данные по эффективности источников излучения с точки зрения экономии электроэнергии и срока службы. Эффективность использования электроэнергии (Н) прежде всего определяется световой отдачей используемых источников излучения, равной отношению светового потока лампы (лм) к её мощности (Вт). В нижеследующей таблице приведены световая отдача и средний срок службы в часах различных наиболее распространенных в настоящее время типов источников света. Таблица 9.1
Здесь: ЛН - лампы накаливания; ГЛН - галогенные лампы накаливания; ЛЛ - люминесцентные лампы; КЛЛ - компактные люминесцентные лампы; ДРЛ - дуговые ртутные лампы; МГЛ - металлогалогенные лампы; НЛВД - натриевые лампы высокого давления. Из приведенной таблицы видно, что компактные люминесцентные лампы и лампы накаливания, применяемые в быту по светоотдаче отличаются примерно в 5 раз, т.е. на получение одного и того же светового потока для компактных люминесцентных ламп требуется в пять раз меньше электроэнергии. За время срока службы одна компактная люминесцентная лампа мощностью 20 Вт позволяет сэкономить, по сравнению с лампой накаливания, 800 кВт ч электроэнергии, для выработки которой потребовалось бы 250 кг каменного угля или 200 литров мазута. Тем не менее у нас в стране компактные люминесцентные лампы применяются ограниченно. Причины две: высокая стоимость и ограниченный выпуск этих ламп. Достоинства современных источников света в полной мере могут быть реализованы с соответствующими пускорегулирующими аппаратами. В настоящее время для включения источников света используются: как электромагнитные пускорегулирующие аппараты (ЭМПРА, обычные, с пониженными потерями, с минимизированными потерями), так и электронные пускорегулирующие аппараты (ЭПРА, неуправляемых и управляемых). К достоинствам ЭМПРА следует отнести чрезвычайно высокую надежность и относительно низкую стоимость. К достоинствам комплектов "лампа-ЭПРА" следует отнести: - практически полное отсутствие пульсаций светового потока ламп, что позволяет использовать данные комплекты для освещения помещений с тяжелой зрительной работой; - высокие световые отдачи комплекта "КЛЛ - пускорегулирующий аппарат", достигающие световой отдачи самих ламп при их работе на частоте 50 Гц, что позволяет обеспечить экономию электроэнергии в осветительной установке на 25 %; - больший на 30-40 % срок службы ламп при их работе с ЭПРА, по сравнению с ЭМПРА; - возможность регулирования световым потоком ламп при работе с ЭПРА. Однако при реализации указанных возможностей потенциал снижения установленной мощности искусственного освещения в общественных зданиях весьма ограничен. Например, лучшие из применяемых в настоящее время для внутреннего освещения общественных зданий источники света по характеристикам световой отдачи практически достигли “потолка” в 96–104 лм/Вт, а для современных типов светильников реальные значения КПД составляют 70–80% и резерв его повышения практически исчерпан. Все шире применяются отделочные материалы с высокими (до 0,8) коэффициентами отражения. Тем не менее, возможно значительное уменьшение потребления электроэнергии в осветительных установках. Анализ показывает, что, например, в структуре энергопотребления общественных зданий доля расхода энергии на цели освещения достигает 70%, четкая же персональная ответственность и материальная заинтересованность в экономии электроэнергии трудно реализуемы. В этом случае оптимизировать энергопотребление можно за счет применения автоматизированных систем управления. Системы управления освещением поддерживают требуемые (нормируемые) уровни освещенности в процессе эксплуатации осветительной установки в соответствии с заданной программой, исключая перерасход электроэнергии. При использовании системы управления освещением экономия электроэнергии достигается за счет нескольких факторов. Во-первых, в начальный период эксплуатации люминесцентных ламп, а также при избыточном (по строительно-конструктивным, архитектурным или другим соображениям) количестве светильников создаваемая в помещении освещенность завышена и может автоматически уменьшаться до требуемого значения, что по оценке снижает энергопотребление на 15–25%. Во-вторых, наиболее значительную экономию электроэнергии позволяет обеспечить рациональное использование естественного освещения (переход от искусственного освещения к совмещенному), так как в течение достаточно большого времени суток освещение может быть вообще отключено либо включено на минимальную мощность (1–10% от номинальной). Экономия может достигать 25–40%. В-третьих, часовая наработка осветительной установки при отсутствии автоматического управления также превышает рациональные значения, так как при стихийном управлении искусственное освещение остается включенным при достаточном естественном освещении и отсутствии в освещаемых помещениях людей, а также в нерабочее время из-за забывчивости персонала.
Литература 1. Интернет - курс "Энергосбережение" под руководством профессора Данилова О.Л. 2. "Закон РФ об энергосбережении" от 3 апреля 1996 г. № 28-Ф3. 3. А.Д. Симонов, Н.А. Языков, П.И. Ведякин, Г.А. Лавров, В.Н. Пармон Мобильные каталитические теплофикационные установки для локального теплоснабжения. Региональные проблемы энергосбережения и пути их решения: Материалы IV всероссийской конференции и семинара РФФИ./ НГТУ. - Нижний Новгород, 2001. - 248с., с. 205-214. 4. В.Н.Пармон, З.Р.Исмагилов, М.А.Керженцев Энергосберегающие и экологически чистые технологии сжигания топлив. Региональные проблемы энергосбережения и пути их решения: Материалы IV всероссийской конференции и семинара РФФИ./ НГТУ. - Нижний Новгород, 2001. - 248с., с.192 - 198. 5. Панцхава Е.С., Кошкин Н.Л., Пожарнов В.А. Биомасса — реальный источник коммерческих топлив и энергии,Ч. 1, Мировой опыт. Теплоэнергетика, 2001, № 2, с. 21-25. 6. Мацнев В.В., Муравьев А.Г. Использование биотоплива как одно из направлений энергосбережения. Энергосбережение в Новгородской области. Проблемы и перспективы: Тезисы докл. Второго регионального научно-практического семинара.-Великий Новгород: НовГУ, НУНЦЭ, 2002, 19-20 с. 7. Шилов С.А., Муравьев А.Г., Федорова Д.М., Парамонова Е.Л., Филиппов М.В., Голяцкий М.Н. Перспективы использования торфа. Энергосбережение в Новгородской области. Проблемы и перспективы: Тезисы докл. Второго регионального научно-практического семинара.-Великий Новгород: НовГУ,НУНЦЭ, 2002,40-41 с. 8.Мацнев В.В., Муравьев А.Г., Федоров С.М. Перевод котла ТП-87 Новгородской ТЭЦ на сжигание торфа в кипящем слое. Вестник ГОУ УГТУ-УПИ. 80 лет Уральской теплоэнергетике. Образование. Наука: Сб. тр. Международной научно-технической конференции. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2003. № 8(28). С. 43-45. 9. Боровков В.М., Зысин Л. В. Основные направления реконструкции отопительных и промышленных котельных по переводу их в режим работы мини – ТЭЦ на базе современных парогазовых технологий. Энергосбережение в Новгородской области. Проблемы и перспективы: Тезисы докл. Второго регионального научно-практического семинара.-Великий Новгород: НовГУ,НУНЦЭ, 2002, 17-19с. 10. Зельвенский Я.Д. Пути энергосбережения при разделении смесей ректификацией. Хим. пром.? 11. Муравьев А.Г., Кузнецов В.Н. Уменьшение расхода энергоресурсов в процессе ректификации метанола. Региональные проблемы энергосбережения и пути их решения: Материалы IV всероссийской конференции и семинара РФФИ./ НГТУ.-Нижний Новгород, 2001. - 248с., с.77-78. 12. Муравьев А.Г. Опыт работы Новгородского учебно – научного центра энергосбережения по повышению эффективности систем теплоснабжения объектов социальной сферы и ЖКХ, “Инженерные системы” АВОК – Северо - Запад, 2005, № 2(17), с. 15-18. 13. Атаев А.Е., Елисеев Н.П. Экономия электроэнергии при внутреннем освещении административных объектов, учебных заведений, больниц, детских садов и других общественных зданий. 14. Экономия энергоресурсов в промышленных технологиях. Справочно – методическое пособие. Под ред. С.К. Сергеева. НГТУ, НИЦЭ – Н. Новгород, 2001. - 296 с. 15. Варнавский Б.П., Колесников А.И., Федоров М.Н. Энергоаудит объектов коммунального хозяйства и промышленных предприятий. Учебное пособие.М.: МИКСиС, 1998. СОДЕРЖАНИЕ
Учебное издание
Дата добавления: 2015-06-27; Просмотров: 1246; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |