Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Организация управления аппаратом




 

Система управления аппаратом ИВЛ, т.е. совокупность органов, с помощью которых оператор настраивает его на требуемый режим работы, должна складываться из мини­мального числа управляющих элементов, не превышающих в общем количества параметров вентиляции, которое в свою очередь должно быть адекватно основному назначе­нию аппарата. Органы управления должны однозначно определять значение характеристик ИВЛ и быть снабжены шкалами, проградуированными непосредственно в едини­цах измерения регулируемого параметра. Все органы управления должны быть сконструированы и размещены так, чтобы их назначение было предельно ясно, располо­жение закономерно и удобно, а ошибки в управлении не могли бы причинить вреда пациенту.

Однако реализация такой системы управления ограни­чивается тем, что основные параметры ИВЛ взаимосвяза­ны физиологически: минутная вентиляция равна произве­дению дыхательного объема на частоту дыхания и только любые два из этих трех параметров могут устанавливать­ся независимо, а третий всегда будет зависеть от избран­ных значений двух других. Это означает, что невозможно создать аппарат ИВЛ, позволяющий независимо устанав­ливать и минутную вентиляцию, и дыхательный объем, и частоту дыхания. Столь же невозможно регулировать мак­симальное давление вдоха независимо от дыхательного объема, так как они связаны между собой определенным образом. Понятно, что нельзя устанавливать продолжи­тельность вдоха и выдоха независимо от частоты дыхания и отношения продолжительностей вдоха и выдоха и т.д.

В связи с практической недостижимостью во всех слу­чаях герметичности присоединения пациента к аппарату возникает разница между подаваемыми аппаратом и по­лучаемыми пациентом значениями дыхательного объема и минутной вентиляции. Однако временные характеристики режима ИВЛ — длительности вдоха и выдоха, их отношение, частота дыхания и т.п. не подвергаются воздействию вследствие изменения характеристик системы аппарат — пациент и поэтому могут точно устанавливаться и поддерживаться.

Решение некоторых технических проблем хотя и принци­пиально возможно, но неоправданно сложно. Так, в аппа­ратах с генератором вдоха переменного потока трудно разместить орган управления частотой дыхания вблизи от органа управления дыхательным объемом. Даже в аппаратах с электронным управлением, где управление аппаратом может быть очень гибким, совсем непросто обе­спечить сохранение установленной частоты дыхания при изменении отношения продолжительностей вдоха и выдоха или изменении длительности паузы вдоха. На систему управления аппаратом влияет и применен­ный в нем способ переключения актов дыхательного цикла, поскольку всегда имеется независимый орган управле­ния тем параметром, который использован для реализации переключения. Например, видя на незнакомом аппарате рукоятки, позволяющие по калиброванным шкалам уста­навливать частоту дыхания или отдельно длительности вдоха и выдоха, можно с уверенностью сказать, что в нем осуществлено переключение по времени. На аппарате с переключением со вдоха на выдох по объему можно всегда обнаружить орган управления дыхательным объемом. Система управления аппаратом зависит от типа приме­няемого в нем генератора вдоха. В аппаратах с генера­тором вдоха постоянного потока наряду с органом управ­ления параметром, определяющим переключение со вдоха на выдох, практически всегда имеется регулятор скорости вдувания газа на вдохе, выполненный без калиброванной шкалы, со шкалой, градуированной в единицах объем­ной скорости движения газа или с наиболее удобной для оператора градуировкой в значениях минутной вентиля­ции. Последнее легко осуществить, когда между скоро­стью вдувания и минутной вентиляцией существует одно­значная зависимость: например, отсутствует пауза вдоха, а отношение продолжительностей вдоха и выдоха посто­янно (аппарат РО-6-03).

Если предусматривается ступенчатое изменение отноше­ния продолжительностей вдоха и выдоха, то для каждого значения этого отношения приходится предусматривать свою шкалу минутной вентиляции. Чтобы избежать услож­нения управления, в аппаратах с электронным управлением можно предусмотреть автоматическое введение поправки в показываемую величину вентиляции при изменении отношения продолжительностей вдоха и выдоха. Такое решение ис­пользовано, например, в ап­парате «Спирон-303».

21. Основные функциональные ха­рактеристики различных типов аппаратов ИВЛ:

а — аппараты типа РО-6: независимо устанавливаются дыхательный объем (Vт), отношение VI/VE, равное от­ношению ТIE, и минутная вентиляция (Vмин) - фактически скорость вдувания VI; б — аппараты типа «Энгстрем-300», «Спиромат-650»; независи­мо устанавливаются скорость вдува­ния (VI), отношение ТIE и частота дыхания (f), ограничивается дыхательный объем (VT); в — аппарат «Пневмотрон-80»: независимо устанав­ливаются дыхательный объем (VT), скорость вдувания (VI), длительность паузы вдоха (VI) и ТIE; г - ап­парат «Пульмотор 19»: независимо устанавливаются скорость вдувания (Vi), ТI, TE, ограничивается дыха­тельный объем (VT).

 

Если в аппаратах одновременно с генератором вдо­ха постоянного потока используется переключение ак­тов дыхательного цикла по времени и разделительная емкость, то градуировка органа управления скоростью вдувания газа в единицах минутной вентиляции невозмож­на, так как в составе дыхательного цикла может присут­ствовать пауза вдоха переменной длительности. В таких моделях данный орган управления обычно называют регу­лятором «рабочего давления» («Энгстрем-300», «Универ­сальный вентилятор LJV-1», «Спиромат-650»), хотя более логично было бы называть его регулятором скорости вдувания.

Особенности организации управления основными пара­метрами ИВЛ можно иллюстрировать графически, исходя из того, что конкретный метод переключения актов дыха­тельного цикла равносилен определению координат точек, соотнетствующих переключению на плоскости и системе координат объем — время (рис. 21). В аппаратах типа РО при заданном дыхательном объеме vt установленной ско­рости вдувания Vi и отношении TE/Ti==m минутная вен­тиляция не зависит от установленного объема и поэтому скорость вдувания однозначно определяет (для каждого значения m) минутную вентиляцию.

На графике (рис. 21, а) видно, что момент переключе­ния на выдох определен как точка пересечения линии V=Vt и линии, проведенной через начало координат под углом, равным скорости вдувания, а момент переключения на вдох задан как точка пересечения линии V==0 с линией, проведенной из предыдущей точки под углом к оси абс­цисс, равным скорости растяжения мехов Ve. Из этого графика следует, что изменение Vt при постоянном отно­шении Vi/Ve обратно пропорционально частоте дыхания, и минутная вентиляция однозначно зависит от Vi.

В аппаратах с переключением по времени и раздели­тельной емкостью (рис. 21,6) связь минутной вентиляции со скоростью вдувания дополняет переменная продолжи­тельность паузы вдоха. Именно поэтому регулятор скоро­сти вдувания нельзя отградуировать в единицах минутной вентиляции, хотя она может быть рассчитана как произ­ведение известных значений частоты и объема.

Еще более усложняется связь минутной вентиляции со скоростью вдувания, если в аппаратах предусмотрена не­зависимая регулировка длительности паузы вдоха. В аппа­рате «Пневмотрон-80» (рис. 21, в) независимо устанав­ливают дыхательный объем Vt, скорость вдувания (ступенчато!), длительность паузы вдоха Tip. Затем в аппа­рате вычисляется продолжительность вдоха и автоматиче­ски устанавливается длительность выдоха те, обеспечи­вающая независимо установленное отношение продолжительностей вдоха и выдоха. Здесь, конечно, также невоз­можна градуировка регулятора скорости вдувания в еди­ницах минутной вентиляции. Более того, значительно за­труднена установка требуемой частоты дыхания, посколь­ку она зависит от значений всех перечисленных факторов.

В ряде простых моделей («Пульмотор-19») с генерато­ром вдоха постоянного потока установлен механизм, по­зволяющий по калиброванным шкалам раздельно устано­вить Ti и Те, а разделительная емкость ограничивает ды­хательный объем. Здесь (рис. 21, г) моменты переключе­ния определяются только временными факторами, и в зависимости от установленной скорости вдувания Vi дыха тельный объем Vt может быть подан с некоторой задерж­кой на вдохе, без нее или вовсе не подан. Поэтому и ми­нутная вентиляция непосредственно не устанавливается.

Таблица 8




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 567; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.