КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Переходим к следующему плану
Базисных клеток 7. План не вырожден. Решаем задачу по методу максимального элемента. Математическая модель двойственной задачи.
Составляем опорный план (табл. 2) Табл.2
Проверяем на вырожденность.
Z= m+n-1=3+5-1=7 Проверяем опорный план на оптимальность.
Задаем U2 = 0 и определяем значения потенциалов. Вычисляем оценки для всех незаполненных клеток (Dij)
Опорное решение не является оптимальным, так как имеются отрицательные оценки. Для клетки (1,5) с наименьшей оценкой (-5) строим цикл. Ставим в эту клетку коэффициент W со знаком «+» и применяя метод наибольшего элемента находим цикл, (табл. 2). Определяем из цикла W =11
Осуществляем сдвиг по циклу и строим следующий план (табл. 3) . Табл.3
Проверяем план на оптимальность методом максимального элемента, как в п.З.
Задаем U2 = 0 и определяем значения потенциалов.
Вычисляем оценки для всех незаполненных клеток (Dij)
Определяем из цикла W=7 Осуществляем сдвиг по циклу и строим следующий план (табл. 4). Табл. 4
Проверяем план на оптимальность методом максимального элемента, как в п.З.
Задаем U2 = 0 и определяем значения потенциалов. Вычисляем оценки для всех незаполненных клеток (Dij) план табл. 4 оптимален.
Определяем значение целевой функции прямойидвойственной задачи:
Исходя из первой теоремы двойственности в условии нашей задачи Zmax=Zmin=1149 (Z=Z’) последний план оптимален Ответ: 1) Чтобы за рабочий день было убрано максимально возможное количество картофеля, следует распределить студентов по полям следующим образом: – Из СО-1 выделить 59 человек для уборки картофеля на втором поле П2, а 11 человек останутся в СО; – из СО-2 выделить 49 человек для уборки картофеля на ПЗ и 43 человека для уборки картофеля на П4, а 7 человек останутся в СО; – из СО-3 выделить 47 человек для уборки картофеля на П1, а 33 человека оставить в СО. 2) При данном оптимальном распределении студентов с четырех полей будет убрано 1149 центнеров картофеля.
Пример № 2 План перевозок:
Решение:
Проверяем на сбалансированность
Задача не сбалансированная. Введем фиктивного потребителя В5 с потребностью в грузе, равной 200 ед. Стоимость перевозки для фиктивного потребителя определим равной нулю. В качестве общей стоимости будем брать сумму затрат на доставку единицы продукции из соответствующего пункта и ее себестоимость в этом пункте.
Дата добавления: 2015-06-27; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |