КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение игровых задач в терминах И/ИЛИ- графа
Такие игры, как шахматы или шашки, естественно рассматривать как задачи, представленные И/ИЛИ- графами. Игры такого рода называются играми двух лиц с полной информацией. Будем считать, что существует только два возможных исхода игры: · выигрыш; · проигрыш. Игры с тремя возможными исходами можно свести к играм с двумя исходами, считая, что есть: выигрыш и невыигрыш. Так как участники игры ходят по очереди, то выделим два вида позиций, в зависимости от того, чей ход: · позиция игрока; · позиция противника. Допустим, что начальная позиция P – это позиция игрока. Каждый вариант хода игрока в этой позиции приводит к одной из позиций противника G1, G2, G3 и так далее. Каждый вариант хода противника в позиции Gi приводит к одной из позиций игрока Pij. В И/ИЛИ- дереве, показанном на рисунке, вершины соответствуют позициям, а дуги – возможным ходам. Уровни позиций игрока чередуются в дереве с уровнями позиций противника. Игрок выигрывает в позиции P, если он выигрывает в G1, G2, G3 и так далее. Следовательно, P – это ИЛИ-вершина. Позиции Gi – это позиции противника, поэтому если в этой позиции выигрывает игрок, то он выигрывает и после каждого варианта хода противника, то есть игрок выигрывает в Gi, если он выигрывает во всех позициях Pij. Таким образом, все позиции противника – это И-вершины. Целевые позиции – это позиции, выигранные согласно правилам игры. Для того, чтобы решить игровую задачу, мы должны построить решающее дерево, гарантирующее победу игрока независимо от ответов противника. Такое дерево задает полную стратегию достижения выигрыша: для каждого возможного продолжения, выбранного противником, в дереве стратегии есть ответный ход, приводящий к победе. Игра «2 лунки» Игрок или его противник может взять из одной любой лунки любое количество камешков. Выигрывает тот, кто берет последний камешек.
Дерево решений этой игры представлено на рисунке.
Пунктирной линией обозначена оптимальная стратегия игрока, которая приведет к выигрышу.
Дата добавления: 2015-06-27; Просмотров: 516; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |