Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Средства тушения 2 страница




воспламенения и зажи­
гают ее в горелке при­
бора СВ. Одновременно
включают секундомер и
регистрируют через каж­
дую минуту изменение______________________

массы жидкости. Испы- ''ио* 5 Ю~

тания продолжают не время, мин

менее 15 мин, затем

пламя тушат, накрыв горелку стеклянной пластинкой. Испытания повторяют пять раз на том же образце, доливая в резервуар жидкость до необходимого уровня.

Если после испытания жидкость изменила цвет или верхняя часть горелки покрылась копотью, то необхо­димо новый образец исследуемой жидкости залить в чистый прибор.

Скорость выгорания UB рассчитывают по формуле (в кг/(м2-мин)]

1/. = Кт/т, (2.42)

где К= 1273/d2 — постоянная прибора, м~2; d — внут­ренний диаметр горелки, м; m — масса жидкости, сгоревшей к моменту времени т, кг; т — время горения жидкости, мин.

По полученным данным строят кривую зависимости скорости выгорания исследуемой жидкости от времени ее горения. За результат каждого испытания принимают максимальное значение скорости выгорания (рис. 2.23).

За величину скорости выгорания исследуемой жид­кости принимают среднее арифметическое максималь­ных значений скорости выгорания, полученных в пяти параллельных испытаниях. Линейную скорость выгора­ния и0 рассчитывают по формуле (в м/мин)

С/о = £/„/Рж, (2.43)

где рж — плотность жидкости, кг/м3.

Коэффициент дымообразования. Для определения ко­эффициента дымообразования фотометрически регист­рируют ослабление освещенности при прохождении света через задымленное пространство.

На рис. 2.24 показана схема установки для опреде­ления коэффициента дымообразования. Камера сгора-

3 Пожаровзрывоопасность... Кн. 1 65



a ip 11

Рис. 2.24. Установка для определения коэффициен­та дымообразования:

1 — камера сгорания; 2 — держатель образца; 3 — эле­ктронагревательная панель; 4, 7 — клапаны продувки; 5 — дымовая камера; 6 — фотоэлемент; 8 — освети­тель; 9 — кварцевое стекло; 10 — предохранительная мембрана; // — вентилятор


ния вместимостью 3-10 3 м3 выполнена из листовой нержавеющей стали толщиной 2,0±0,1 мм. В ней имеются верхнее и нижнее отверстия сечением 30X160 мм, соединяющие ее с дымовой камерой. На боковой поверхности камеры сгорания расположено окно из кварцевого стекла для наблюдения за образцом при испытании. В камере сгорания установлены дер­жатель образца и закрытая электронагревательная панель, смонтированная на верхней стенке камеры под углом 45° к горизонтали. Держатель образца выполнен в виде рамки размерами 100ХЮ0ХЮ мм и закреплен на дверце камеры на расстоянии 60 мм от панели парал­лельно ее поверхности. В держатель устанавливают вкладыш из асбосилита, в центре которого имеется углубление для размещения образца. Над держателем образца установлена газовая горелка. При испытании материалов в режиме горения пламя горелки касается поверхности верхней части образца.

Дымовая камера размерами 800X800X800 мм выполнена из листовой нержавеющей стали. Внутрен­ние стенки камеры оклеены черной бумагой. В верхней стенке и в днище камеры имеются отверстия для воз­вратных клапанов продувки, осветителя и предохрани­тельной мембраны. Внутри камеры находятся устройст­во для вертикального перемещения фотоэлемента и двухлопастный вентилятор для перемешивания дыма.

Испытания проводят в двух режимах: термоокисли-


тельного разложения (тления) и пламенного горения. Режим термоокислительного разложения (тления) обеспечивается при нагревании поверхности образца до 400 °С, при этом плотность теплового потока равна 18 кВт/м2. Материалы, термостойкость которых выше 400 °С, испытывают при нагревании до 600 °С, плот­ность теплового потока равна 38 кВт/м2. Во всех слу­чаях материалы не должны самовоспламеняться при испытании. Режим пламенного горения обеспечивается при использовании газовой горелки и нагревании по­верхности образца до 750 °С, при этом плотность тепло­вого потока равна 65 кВт/м2. Для измерения плотности теплового потока используют датчик металлокалори-метрического типа.

При наладке установки определяют подаваемое на электронагревательную панель напряжение, обеспечи­вающее указанные режимы испытания. Для этого вставляют в держатель вкладыш с контрольным образ­цом из асбестоцемента (40Х40ХЮ мм), в центре которого укреплена термопара. Дверцу камеры сгора­ния закрывают и подают напряжение на спирали элек­тронагревательной панели. Для контроля стабилизиро­ванных условий нагревания применяют потенциометр.

При проведении испытания в режиме пламенного го­рения вставляют в держатель вкладыш с асбестоцемент-ным образцом, закрывают обе камеры, подают на спирали электронагревательной панели выбранное для данного режима напряжение. После выхода панели на стабилизированные условия нагревания включают осве­титель, измерительный прибор люксметра, вентилятор перемешивания. Затем открывают камеру сгорания, вынимают вкладыш с асбестоцементным образцом, за­жигают газовую горелку, камеру закрывают. Произ­водят продувку дымовой камеры в течение 1 мин. Регу­лируют диафрагмами осветитель, установив освещен­ность 100 лк, и диаметр пучка света, равный диаметру1 светочувствительной поверхности фотоэлемента. Под­готовленный образец испытуемого материала устанав­ливают во вкладыш, имеющий комнатную температуру, открывают дверцу камеры сгорания, без задержки вставляют вкладыш в держатель и закрывают дверцу. Продолжительность испытания определяется временем достижения минимальной освещенности, оно не более 15 мин.


При испытании в режиме тления газовую горелку не зажигают, устанавливают вкладыш с асбестоцемент-ным образцом, подают соответствующее напряжение на электронагревательную панель. Порядок проведения испытаний аналогичен порядку, установленному для ре­жима пламенного горения. Испытывают по пять образ­цов материала в каждом режиме. По результатам каж­дого испытания рассчитывают коэффициент дымообра-зования £)™ах по формуле

где V — вместимость дымовой камеры, м3; L — длина светового пути в задымленном пространстве, м; m — масса образца исследуемого материала, кг; In (E/Emin) — оптическая плотность дыма; Е, Emin соответственно начальная и минимальная освещенность, лк.

Для каждой серии испытаний рассчитывают среднее арифметическое не менее пяти значений коэффициента дымообразования. За окончательный результат прини­мают наибольшее значение из двух средних арифмети­ческих.

Индекс распространения пламени. Для определения индекса распространения пламени оценивают скорость перемещения фронта пламени по поверхности образца материала, помещенного в зону действия теплового излучателя.

На рис. 2.25 представлена схема установки для из­мерения индекса распространения пламени. Радиацион­ная панель размерами 250X470 мм нагревается горя­щим газом или электроспиралью. Газовая радиацион­ная панель состоит из трех горелок инфракрасного излучения. Для увеличения мощности радиации перед панелью установлена сетка из жаростойкой стали. Электрическая радиационная панель состоит из двух секций размерами 250X235 мм.

Держатель образца состоит из подставки и рамки, выполненной из листовой жаростойкой стали толщиной 0,8 мм. На длинные рейки рамки нанесены деления через каждые 30 мм и пронумерованы участки от нуле­вого до девятого сверху вниз. Газовая горелка установ­лена горизонтально между радиационной панелью и держателем образца на расстоянии 8 мм от поверхности образца, напротив середины нулевого участка. Горелка


Рис. 2.25. Установка для определе­ния индекса распространения пла­мени:

/ — стойка; 2 — подставка держателя образца; 3 — радиационная панель; 4 — рамка держателя образца; 5 — газовая горелка; 6 — вытяжной зонт; 7 — тер­моэлектрический преобразователь

представляет собой трубку из жаростойкой стали, имею­щую со стороны держателя образца пять отверстий диа­метром 0,6 мм на расстоянии 20 мм одно от другого; на трубку надета металлическая сетка. Длина пламени горел­ки должна быть равной 11 мм. Имеются также: тер­мопары типа ТХА; потенцио­метр типа КСП-4 с гра­дуировкой XA6s; асбестоце-ментная плита длиной 320 мм, шириной 140 мм и толщи­ной не более 10 мм; регулятор напряжения с максимальной силой тока нагрузки 8А.

Для испытаний готовят пять образцов исследуемого материала длиной 320 мм, шириной 140 мм, фактической толщиной не более 20 мм. Отделочные и облицовочные материалы, а также лакокрасочные и пленочные покры­тия испытывают нанесенными на ту же основу, которая принята в реальной конструкции. Перед испытанием образцов и тарировкой установки радиационную панель нагревают до стационарной температуры, обеспечиваю­щей плотность теплового потока на нулевом участке образца 32 кВт/м2, на пятом участке 20 кВт/м2, на девя­том участке 12 кВт/м2.

Для измерения плотности падающего лучистого теплового потока используют датчик металлокалори-метрического типа. Датчик состоит из медной пластины размером 20X20X2 мм, закрепленной заподлицо в асбестоцементной плите шириной 40 мм и толщиной 10 мм. Длину плиты принимают в зависимости от раз­меров держателя образца, но не менее 40 мм. В плите


под медной пластиной делают углубление размером 18X18X4 мм. Лицевая сторона пластины покрыта смесью ацетиленовой сажи и жидкого стекла. В центр пластины впаяна термопара.

Величину плотности теплового потока q рассчиты­вают по формуле

где т — масса медной пластины, кг; с — удельная теплоемкость меди 0,39 кДж/(кг-К); е — степень чер­ноты поверхности медной пластины, равная 0,95; F — площадь поверхности пластины, м2; AT — повышение температуры датчика за время Дт, К; Ат — время на­грева медной пластины, с.

Тепловой поток измеряют после выхода радиацион­ной панели на требуемый режим работы. Затем датчик охлаждают до комнатной температуры и закрепляют вместо образца так, чтобы центральные части датчика и образца (или его отдельного участка) совпадали. До начала измерений датчик находится вне зоны тепло­вого воздействия панели или экранируется. Определяют тепловой коэффициент установки, характеризующий количество тепла, подводимого к поверхности образца в единицу времени и необходимого для повышения температуры дымовых газов на 1 °С. Для этого в рамке держателя закрепляют образец асбестоцементной плиты, рамку устанавливают под углом 30° к радиаци­онной панели так, чтобы расстояние между верхним краем рамки и металлической сеткой панели составляло не менее 70 мм. Через 15 мин отмечают начальную температуру дымовых газов to- Затем к образцу на уровне /2 его высоты подносят зажженную газовую горелку, обеспечивающую выделение теплоты со ско­ростью 3,1 кДж/с. Плоскость выходного отверстия горелки устанавливают параллельно поверхности асбо­цементного образца и на расстоянии не менее 10 мм от нее. Через 10 мин отмечают установившуюся темпера­туру дымовых газов t\.

Коэффициент р рассчитывают по формуле

M. (2.46)

где qr — удельная теплота сгорания газа, к-Дж/л; Q — расход газа газовой горелки, л/с.


Перед испытанием каждого материала определяют начальную температуру t0 точно так, как и при тариро-вочном испытании. Образец исследуемого материала закрепляют в рамке держателя и делают на нем отметки, соответствующие рискам на рамке держателя. Рамку с образцом устанавливают перед нагретой ра­диационной панелью точно так, как и при тарировке. Материалы толщиной до 10 мм испытывают с подлож­кой из асбестоцементной плиты толщиной 10 мм. В про­цессе испытания определяют:

время от начала испытания до момента прохождения фронтом пламени нулевой отметки, т0, с;

время т,, в течение которого фронт пламени проходит 1-й участок поверхности образца (i=l, 2,..., 9), с;

расстояние /, на которое распространился фронт пламени, мм;

максимальную температуру дымовых газов tman °C;

время от начала испытания до достижения макси­мальной температуры ттах, с.

Испытание длится до момента прекращения распро­странения пламени по поверхности образца или до достижения максимальной температуры дымовых газов, но не более 10 мин. Для каждого образца рассчитывают индекс распространения пламени по формуле

Д-)]'/2, (2.47)

где 0,0115 — размерный коэффициент; Вт 1; 0,2 — размерный коэффициент, с/мм.

В качестве индекса распространения пламени иссле­дуемого материала принимают среднее арифметическое пяти значений индекса, полученных при параллельных испытаниях образцов.

Показатель токсичности продуктов горения поли­мерных материалов. Для определения показателя ток­сичности устанавливают зависимость летального эф­фекта продуктов сгорания от массы материала, отнесен­ной к единице объема замкнутого пространства.

Установка (рис. 2.26) состоит из камеры сгорания вместимостью не менее 3-10~3 м3, выполненной из нержавеющей стали толщиной 2 мм. Внутренняя по­верхность камеры теплоизолирована асбестоцементны-ми плитами и облицована алюминиевой фольгой. На



15-

1S

 


Рис. 2.26. Установка для определения показателя токсичности про­дуктов сгорания:

/ — камера сгорания; 2 — держатель образца; 3 — электронагревательная панель; 4 — заслонка; 5, 17 — переходные рукава; 6 — стационарная секция экспозиционной кам'еры; 7—подвижная секция экспозиционной камеры; 8, 14 — штуцеры; 9 — дверцы предкамеры; 10 — клетка для подопытных животных; 11 — предкамера; 12 — предохранительная мембрана; 13 — вентилятор; 15 — резиновая прокладка; 16 — клапан продувки

верхней стенке камеры под углом 45° к горизонтали установлена электронагревательная панель размерами 120X120 мм. В камере сгорания на ее дверце укреплен держатель образца, выполненный из листовой жаро­стойкой стали в виде рамки размерами ЮОХ ЮОХ 10 мм, в которой закреплен поддон из асбестоцемента. Поддон имеет углубление для фиксированного размещения асбестоцементного вкладыша с образцом испытуемого материала.

Нагреваемая поверхность держателя образца и по­верхность электронагревательной панели параллельны,


расстояние между ними равно 60 мм. Над держателем образца расположена газовая горелка таким образом, что при испытании ее пламя длиной 10—12 мм касается поверхности верхней части образца. На боковой поверх­ности камеры сгорания имеется окно из кварцевого стекла для наблюдения за образцом при испытании.

Экспозиционная камера, соединенная с камерой сго­рания переходными рукавами с заслонками, состоит из стационарной и подвижной секций. В верхней части камеры находится четырехлопастный вентилятор пере­мешивания. Кроме того, камера снабжена предохрани­тельной мембраной из алюминиевой фольги, клапаном продувки, штуцерами для присоединения газоанализа­тора и ввода термометра. Перемещением подвижной секции изменяют вместимость экспозиционной камеры от 0,1 до 0,2 м3. В предкамеру вместимостью 1,5-10~2 м3, оборудованную наружной и внутренней дверцами и смотровым окном, помещают клетку с подопытными животными.

Испытания проводят в двух режимах: термоокисли­тельного разложения (тления) при температуре по­верхности образца 400 °С и пламенного горения при температуре поверхности образца 750 °С с зажженной газовой горелкой.

В предварительных испытаниях определяют для каж­дого материала температурный режим, способствующий выделению более токсичных продуктов горения. Для герметизации камеры нагнетают воздух в надувную прокладку, вставляют в держатель образца вкладыш с контрольным образцом из асбестоцемента размерами 60X60X10 мм. На центральном участке нагреваемой поверхности образца закрепляют термопару. Закры­вают заслонки переходных рукавов и внутреннюю дверцу предкамеры, выводят установку на режим пла­менного горения.

После выхода электронагревательной панели на стационарный режим открывают заслонки переходных ружавов и дверцу камеры сгорания. Вынимают вкладыш с контрольным образцом и термопарой, зажигают газовую горелку. Устанавливают в держатель вкладыш с образцом исследуемого материала. После воспламе­нения образца газовую горелку немедленно отключают.

Продолжительность горения образца определяют по времени достижения максимальных значений концент«


рации оксида и диоксида углерода в экспозиционной камере или принимают равным 15 мин. Затем закры­вают заслонки переходных рукавов и включают венти­лятор перемешивания. Клетку с животными помещают в предкамеру, наружную дверцу которой закрывают. После снижения температуры газов в нижней части экспозиционной камеры до 30 °С открывают внутрен­нюю дверцу предкамеры и фиксируют время начала экспозиции животных. Экспозицию проводят в течение 30 мин при концентрации кислорода не менее 16 %. В каждом испытании используют десять белых мышей массой по 20 г.

После завершения экспозиции открывают клапан продувки, заслонки переходных рукавов, наружную дверцу предкамеры, включают вентилятор и вентили­руют установку в течение 10 мин. Регистрируют число погибших животных и характерные признаки интокси­кации.

Испытания в режиме тления проводят при 400 °С, при этом газовую горелку не зажигают. Термостойкие материалы испытывают при 600 °С. В случае само­воспламенения образца температуру испытания сни­жают с интервалом 50 °С.

Критерием выбора режима испытаний служит наи­большее число летальных исходов в сравниваемых группах подопытных животных. При выбранном темпе­ратурном режиме в основных испытаниях находят ряд значений зависимости летальности животных от вели­чины отношения массы образца к вместимости экспо­зиционной камеры. Для получения токсических эффек­тов меньше и больше уровня летальности 50 % изме­няют вместимость экспозиционной камеры, оставляя постоянными размеры образца исследуемого мате­риала.

При определении токсичности учитывают гибель жи­вотных, наступившую во время экспозиции, а также в течение последующих 14 сут. В зависимости от состава материалов при анализе их продуктов сгорания опре­деляют количество оксида и диоксида углерода, циани­стого водорода, акрилонитрила, хлористого водорода, бензола, оксидов азота, альдегидов и других веществ. Для оценки вклада оксида углерода в токсический эффект измеряют содержание карбоксигемоглобина в крови подопытных животных.'


Полученный ряд значений зависимости летальности от массы материала используют для расчета показателя токсичности #cl5o- Расчет проводится при помощи пробит-анализа или других способов расчета средних смертельных доз и концентраций.

Минимальное взрывоопасное содержание кислорода и минимальная флегматизирующая концентрация флег­матизатора. Для определения минимального взрыво­опасного содержания кислорода находят предельное содержание кислорода в газо-, паро- или пылевоздуш-ной смеси, при котором смесь является предельной по горючести. Экспериментальное определение мини­мального взрывоопасного содержания кислорода и флегматизирующей концентрации флегматизатора в газо-, паровоздушных смесях осуществляют на уста­новках «Предел» и КП. Минимальное взрывоопасное содержание кислорода в газо-, паровоздушных смесях при заданном флегматизаторе определяют в два этапа:

находят минимальную флегматизирующую концен­трацию флегматизатора;

вычисляют минимальное взрывоопасное содержание кислорода по найденной минимальной флегматизирую­щей концентрации флагматизатора.

Для определения минимальной флегматизирующей концентрации заданного газообразного флегматизатора устанавливают зависимость концентрационных преде­лов распространения пламени по газо-, паровоздушной смеси от концентрации в ней изучаемого флегмати­затора. Для этого применяют методы определения концентрационных пределов распространения пламени. При этом в вакуумированный сосуд последовательно подают по парциальным давлениям исследуемый газ (пары исследуемой жидкости) и заданный флегмати-затор, а затем подают воздух до выравнивания давле­ния в реакционном сосуде с атмосферным. Изменяя концентрацию исследуемого вещества в смеси при неизменном соотношении флегматизатора и воздуха, находят нижний и верхний пределы распространения пламени исследуемого вещества при заданной концент­рации флегматизатора. Затем увеличивают на 2 % концентрацию флегматизатора и снова находят нижний и верхний пределы распространения пламени по смеси. Проводя аналогичные испытания, находят такое значе­ние концентрации флегматизатора, при котором нижний


Рис. 2.2Г. Кривая флег-матизации

Концентрация флегматизатора 8 смеси, %(од)

и верхний пределы рас­пространения пламени по исследуемой смеси сливается на графике в одну точку фф (рис. 2.27). Концентрацию флегматизатора, соот­ветствующую точке фф, принимают за мини- ■

мальную флегматизирующую концентрацию. Испыта­ния с концентрациями компонентов смеси, соответст­вующими точке фф, должны быть воспроизведены не менее трех раз.

Минимальное взрывоопасное содержание кислорода Фф0 рассчитывают по формуле


ФфО2 =2,09-10-5(100-<


(100-<рй2о).


(2.48)


где фф — минимальная концентрация флегматизатора,
% (об.); фн2о___ концентрация водяного пара, % (об.).

Минимальное взрывоопасное содержание кислорода и минимальную флегматизирующую концентрацию флегматизатора в пылевоздушных смесях определяют на установке, схема которой представлена на рис. 2.28.

Реакционный сосуд внутренним диаметром 105 мм и высотой 450 мм выполнен из коррозионностойкого материала. На расстоянии 1/2 высоты сосуда имеются патрубок для крепления датчика и штуцер для отбора газовых проб. Сосуд рассчитан на давление 1000 кПа. Конусный распылитель является верхней крышкой реак­ционного сосуда и выполнен из того же материала, что и сосуд. Вместимость вихревой форкамеры распы­лителя составляет 100—200 см3. Обратный клапан с условным диаметром прохода 5 мм рассчитан на давле­ние до 2500 кПа. Клапан с электроприводом любого типа, имеющий условный диаметр прохода 5 мм, пред­назначен для давления не менее 980 кПа. Ресивер вместимостью 1 дм3 рассчитан на давление 1000 кПа, он снабжен манометром. Смеситель — герметичный цилиндрический сосуд вместимостью 10.—20 дм3 — рассчитан на давление не менее 1000 кПа. Он снабжен


 

 

-      
     
   

■НХ* —04


Кислород

флегматизатоа


Рис. 2.28. Установка для определения минимального взрывоопасного содержания кислорода и минимальной флегматизирующей концен­трации флегматизатора в пылевоздушных смесях:

/ — реакционный сосуд; 2 — конусный распылитель; 3 — вихревая фор-камера; 4 — обратный клапан; 5 — клапан с электроприводом; 6 — ресивер; 7 — смеситель; 8 — пуско-регулирующий блок; 9 — патрубок; 10 — источ­ник зажигания; // — штуцер

встроенной мешалкой с электроприводом и штуцерами для подвода газов и крепления манометра.

В качестве источника зажигания используют нака­ленную до 1100°С электрическую спираль. Мощность, потребляемая спиралью при силе тока 13 А, составляет 475 Вт. В качестве контрольного источника зажигания применяют пиротехнический воспламенитель типа ЭД-КЗ марки НК-Ю/15. В пуско-регулирующий блок входят регулируемый источник питания электроспира­ли, регистрирующий электронно-лучевой осциллограф, программное реле времени и тензометрический усили­тель, выбранный в соответствии с датчиком давления, газоанализатор типа «Газохром».

Тарируют систему измерения давления подачей азота в реакционный сосуд до давления 300 кПа с интервалом 50 кПа, а затем сбрасыванием давления до нуля через те же интервалы; при этом фиксируют весь процесс на осциллографе. По данным, снятым с осциллограммы, строят тарировочный график зависимости отклонения луча осциллографа от приращения давления, который должен представлять собой прямую линию. Определяют давление «холостого» испытания установки р0, возни-


кающее в реакционном сосуде от подачи распыляю­щего газа при включенном источнике зажигания (время распыления 1 с, давление распыляющего газа в ресивере 300 кПа).

Для определения минимального взрывоопасного содержания кислорода проводят предварительные и основные испытания. В серии предварительных испы­таний находят такое количество исследуемого вещества, при котором возникает наибольшее давление при вос­пламенении образца в воздушной среде. Первое испы­тание начинают с образцом массой 0,5 г и постепенно увеличивают ее на 0,5 г. По результатам испытаний строят кривую зависимости давления воспламенения от массы образца. Массу образца, соответствующую максимуму этой зависимости, принимают за оптималь­ную. Затем определяют минимальное взрывоопасное содержание кислорода в его смеси с газообразным флегматизатором на образцах оптимальной массы. Для этого в смеситель по парциальным давлениям подают компоненты газовой смеси.

В первом испытании концентрация кислорода в сме­сителе равна его содержанию в воздухе нормального состава, а флегматизатор подают в количестве, необхо­димом для создания в смесителе избыточного давления 450 кПа. Перемешивают газовую смесь в течение 5 мин и продувают ею реакционный сосуд. Затем образец исследуемого вещества оптимальной массы помещают в форкамеру распылителя, подают в ресивер из смеси­теля заготовленную газовоздушную смесь до требуе­мого давления, включают источник зажигания и рас­пыляют образец. Увеличение давления в реакционном сосуде не менее чем на 10 кПа по сравнению с давлением «холостого» испытания принимают за положительный результат. В зависимости от результата первого испы­тания следующие испытания проводят соответственно с увеличенной или уменьшенной на 1 % концентрацией кислорода в газовой смеси. После каждого испытания реакционный сосуд очищают от остатков пыли и про­дуктов сгорания.

В серии предварительных испытаний находят мини­мальную концентрацию кислорода, при которой наблю­дается воспламенение аэровзвеси, и максимальную кон­центрацию кислорода, при которой воспламенение не происходит. Среднее арифметическое двух этих


величин принимают за минимальное взрывоопасное

содержание кислорода ффО2

В серии основных испытаний уточняют найденное значение ффо2, проводят испытания на воспламенение с образцами, массы которых отличаются от оптималь­ной в меньшую и большую стороны на 0,2 г. На образце, соответствующем минимальному значению ффо2, следует получить не менее десяти последовательных отказов на воспламенение.

За минимальное взрывоопасное содержание кисло­рода в аэровзвесях исследуемого вещества принимают его минимальное значение, полученное в серии основных испытаний. Минимальную флегматизирующую концент­рацию флегматизатора рассчитывают по формуле

477 4
ФФ = 100 - ' ---------- фф0 (2.49)

10°—Фн2о

Максимальное давление взрыва и скорость нараста­ния давления при взрыве. Для определения максималь­ного давления взрыва зажигают газо-, паро- или пыле-воздушную смесь заданной концентрации в объеме реакционного сосуда и фиксируют развивающееся при воспламенении горючей смеси давление взрыва. Изме­няя концентрацию горючего в смеси, выявляют макси­мальное давление взрыва. Для определения скорости нарастания давления при взрыве находят максималь­ную скорость изменения давления, возникающего в объеме реакционного сосуда при взрыве газо-, паро-или пылевоздушных смесей заданного состава.

Определение максимального давления взрыва и ско­рости нарастания давления при взрыве газов и паров жидкостей выполняют на установке, схема которой показана на рис. 2.29.

Реакционный сосуд вместимостью 4 дм3 представляет собой две соединенные фланцами полусферы. Нижняя полусфера имеет термостатируемыи электронагреватель для проведения испытаний при повышенной темпера­туре с легкоконденсируемыми парами жидкостей. Реакционный сосуд должен быть рассчитан на давление, которое не менее чем в два раза превышает макси­мальное давление взрыва испытуемых смесей. Датчик давления имеет верхний предел измерения до 1000 кПа. Показания датчика давления фиксируются электронно­лучевым осциллографом. Термопара типа ТХА по-




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 433; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.