Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Клинико-биохимическое исследование 1 страница




С

М+Ю+П

ИС=

ИС имеет диагностическое значение при нейтрофилии (увеличение содержания нейтрофилов), которая встречается наиболее часто и условно делится на несколько типов: 1) нейтрофилия с простым регенеративным (гипорегенеративным) сдвигом ядра влево. Характеризуется увеличением количества палочкоядерных нейтрофилов на 10-13% при нормальном или несколько уменьшенном содержании сегментоядерных клеток. Его наблюдают при хронических, скрыто протекающих инфекциях (туберкулез, и др.), легком течении острых инфекций, протозойных заболеваниях, гнойных местных процессах (нагноение ран, артрит, ограниченный тендовагинит и др.); 2) нейтрофилия с регенеративным сдвигом ядра характеризуется увеличением палочкоядерных с одновременным появлением юных нейтрофилов в небольшом количестве. При этом лейкоцитоз умеренный. Его наблюдают при острых инфекционных заболеваниях, эндокардите, септических процессах, у лошадей – после продолжительной и тяжелой работы; 3) нейтрофилия с резким гиперрегенеративным сдвигом ядра характеризуется увеличением числа палочкоядерных, юных нейтрофилов и появлением миелоцитов. Этот сдвиг указывает на резкое раздражение кроветворных органов. Если одновременно с этим отмечается лейкопения, то это результат угнетения функции костного мозга и является неблагоприятным признаком. Такой сдвиг в картине крови наблюдают при тяжелом течении инфекционных и протозойных заболеваний, септических процессах, острых желудочно-кишечных заболеваниях у молодняка, начальной стадии миелолейкоза, отравлениях солями ртути и свинца, лизолом и др.; 4) нейтрофилия с гипопластическим (дегенеративным) сдвигом ядра вправо характеризуется увеличением содержания сегментоядерных нейтрофилов без увеличения процента незрелых клеток. При этом появляются измененные формы нейтрофилов с сильной сегментацией ядра, оно может быть представлено даже отдельными округлыми частями без связи между собой. В цитоплазме появляются вакуоли, изменяется размер клеток (чаще увеличение). Вакуолизация цитоплазмы и ядра, наличие патологической (токсической) зернистости отмечается при тяжело протекающих инфекционных и незаразных заболеваниях с ярко выраженной интоксикацией организма, отравлениях, заболеваниях органов кроветворения, лучевой болезни.

Уменьшение количества нейтрофилов свидетельствует об угнетении и истощении функции гранулопоэза, что может быть результатом алиментарной дистрофии, инфекционных заболеваний, радиационных поражений. Нейтропения также может отмечаться при длительном и бесконтрольном применении антибиотиков, сульфаниламидов, препаратов преднизолонового ряда в завышенных дозах. Смена нейтропении нейтрофилией, а лейкопении лейкоцитозом свидетельствует о возникновении осложнения болезни.

Лимфоциты по размеру могут быть малые (до 10 мкм), средние (10-14 мкм) и большие (15-25 мкм). Они имеют круглое ядро темно-фиолетового цвета. Цитоплазма обычно слабо-голубого цвета, вокруг ядра имеет зону просветления (перинуклеарная зона). У здоровых животных в периферической крови преобладают малые лимфоциты, а средние и большие составляют не более 5-6%.

Лимфоцитоз может быть физиологический (физическая нагрузка, ультрафиолетовое облучение, после приема корма моногастричными животными и др.) и патологический. Последний отмечается при скрытых, латентно протекающих заболеваниях без лихорадки, энцефаломиелите, классической чуме свиней, пироплазмозе, алиментарной дистрофии, анемии. Лимфоцитоз на фоне уменьшения количества эритроцитов отмечается при усилении интоксикации организма. Лимфоцитоз же с одновременным возрастанием количества эозинофилов и моноцитов при снижении числа нейтрофилов, считается благоприятным признаком.

При лейкозе, особенно лимфолейкозе, в крови появляются незрелые лимфоциты (лимфобласты, пролимфоциты). Тяжелые патологические процессы сопровождаются появлением патологических форм лимфоцитов. Они имеют большие размеры, цитоплазму серого цвета, ядро разнообразной формы, рыхлой структуры, часто в стадии деления.

Лимфопения нередко сопровождается значительной нейтрофилией, что характерно для ряда инфекционных, гнойных и септических процессов в организме. Резкая лимфопения с абсолютной нейтропенией возникает при значительном воздействии на животное ионизирующей радиации (лучевая болезнь). Прогрессирующая лимфопения с лейкопенией является неблагоприятным, даже угрожающим признаком. Смена лимфопении на лимфоцитоз указывает на наступление выздоровления.

Моноциты являются самыми крупными клетками периферической крови (15-25 мкм), округлой или нередко неправильной формы. Ядро разнообразной формы – в виде подковы, бабочки, трилистника, бобовидное, неравномерно окрашивается в слабо-фиолетовый цвет с темно-фиолетовыми пятнами. Цитоплазма серо-дымчатого или голубовато-серого цвета.

Увеличение содержания моноцитов (моноцитоз) часто свидетельствует о развитии иммунных процессов в организме. Наблюдается при инфекционных и инвазионных заболеваниях у животных в стадию выздоровления (затухание инфекционного процесса – моноцитарная защитная фаза). Резкий моноцитоз отмечается при лучевой болезни, лучевых ожогах, при моноцитарном лейкозе. Моноцитопения вплоть до отсутствия в периферической крови моноцитов в сочетании с нейтрофилией бывает при острых и тяжелых септических заболеваниях в разгар болезни, является неблагоприятным симптомом.

 

(Холод В.М., Мацинович А.А.)

В настоящее время в клинической лабораторной диагностике широко используются современные биохимические и иммунохимические методы. С целью совершенствования и ускорения проведения исследований применяются полуавто- и автоанализаторы и большое количество лабораторно- диагностических наборов и тест-систем.

Количественное определение исследуемых компонентов проводится обычно “мокрым” анализом, когда и исследуемые вещества и химические реагенты находятся в растворенном состоянии.

Для полуколичественных и иногда количественных определений используется также метод “сухого” анализа, когда на специальную бумагу или пленку в определенных пропорциях наносятся химические реагенты, необходимые для анализа, высушиваются и стабилизируются. После нанесения точного объема биологической жидкости (кровь, сыворотка и др.) реагенты активируются и химическая реакция протекает так же, как и при “мокром” анализе. Разработанные для этих целей тест-полоски, имеют довольно сложное строение и состоят из нескольких слоев. В наружном слое происходит отделение сыворотки от форменных элементов. Сыворотка затем проникает в нижележащие слои, содержащие химические реагенты, которые отделены друг от друга. Изменение окраски продуктов реакции регистрируется с помощью отражательного фотометра.

Для качественной оценки или полуколичественных определений широко используются диагностические полоски, которые позволяют определять в биологических жидкостях различные вещества (белки, углеводы, кетоновые тела, желчные пигменты и др.). Полоску опускают в биологическую жидкость, затем извлекают, подсушивают фильтровальной бумагой и прикладывают к цветной стандартной шкале. Сравнивают окраски и делают вывод о наличии определенных веществ и их примерном содержании.

В настоящее время практически для всех биохимических показателей, имеющих клиническое значение, различными лабораториями и фирмами выпускаются диагностические наборы, включающие все необходимые компоненты для проведения исследования и инструкцию по его проведению. Поэтому при проведении массовых анализов следует ориентироваться на их использование, а не пытаться, как раньше, проводить всю подготовительную работу своими силами.

До настоящего времени основным биологическим объектам, используемым в клинико-биохимических исследованиях, является кровь. Химический состав крови и других биологических жидкостей не является постоянным, поскольку в организме в результате обмена веществ расходуются одни и накапливаются другие вещества. Эти колебания происходят в определенных пределах, характерных для данного животного (индивидуальные колебания) или вида в целом.

Кровь занимает особое место среди других биологических жидкостей и тканей, используемых для клинико-биохимических исследований. На протяжении всей истории лабораторных исследований в медицине и ветеринарии кровь является исключительно важным объектом исследования в прикладных целях. Это положение сохраняется на сегодняшний день и сохранится в будущем.

В настоящее время имеется большой экспериментальный материал по химическому составу крови у сельскохозяйственных животных, который может быть использован для диагностики различных заболеваний, контроля полноценности рациона и обеспеченности биологически важными веществами, определения характера и степени воздействия ксенобиотиков, лекарственных веществ на организм.

Обнаружение патологических или иных отклонений происходит путем сравнения исследуемых величин со значениями, характерными для здорового животного (референтными, эталонными значениями).

В зависимости от природы исследуемого вещества для определения берется цельная кровь или сыворотка. Если вещество равномерно распределено между форменными элементами и сывороткой (глюкоза, мочевина и др.), то для исследования берут обычно цельную кровь. При неравномерном распределении используют сыворотку или плазму.

С целью получения воспроизводимых результатов при проведении клинико-биохимических исследований проводится всесторонняя унификация методов и полученных результатов. Одним из способов такой унификации является использование Международной системы единиц (СИ).

Поскольку использование единиц СИ в различных областях знаний имеет свои особенности, выработаны рекомендации по применению этой системы в медицине и ветеринарии. В части, касающейся вопросов клинической биохимии и выражения результатов биохимических исследований, их можно свести к следующему.

Количество вещества должно выражаться в молях и кратных от него значениях. Если молярная масса неизвестна или исследуемый компонент является смесью веществ, то количество вещества должно выражаться в килограммах и кратных от него значениях.

Допускается использование ряда единиц, не относящихся к системе СИ. Так, в качестве единицы объема рекомендуется брать литр. Временные данные следует выражать по возможности в секундах или сутках (24 ч). Результаты ферментативной активности допускается выражать не только на секунду, но также на минуту и час.

В некоторых случаях в лабораторной практике допускается применение и внесистемных единиц, например при использовании тимоловой пробы. В этом случае является обязательной ссылка на использованные методы. В процентах выражается содержание однородных величин, например белковых фракций сыворотки крови.

Из физико-химических методов в клинической биохимии чаще всего используют оптические методы – колориметрию, спектрофотометрию, нефелометрию, атомно-абсорбционную фотометрию, флюорометрию.

Наиболее широко распространены методы с колориметрическим и спектрофотометрическим окончанием, когда о количестве исследуемого вещества судят по величине светопоглощения раствора. Используемые для этих определений фотометрические приборы подразделяются на фотоэлектроколориметры (КФК-2, КФК-3 и др.) и спектрофотометры (СФ-46, «Солар» и др.).

Для массовых определений большого числа химических элементов используют метод атомно-абсорбционной фотометрии, основанный на поглощении света атомами вещества, находящегося в газообразном состоянии.

Если вещество находится в коллоидном состоянии (коллоидный раствор), то используют нефелометрию, а если вещество способно при ультрафиолетовом облучении к флуоресценции – флюорометрию.

В ряде случаев в клинико-биохимических исследованиях, изучаемая смесь веществ должна быть подвергнута предварительному разделению. В этих случаях используют такие методы как электрофорез и хроматография. Электрофорез – процесс разделения заряженных биомолекул в электрическом поле. Хроматография - процесс разделения многокомпонентных систем, основанный на многократно повторяющихся явлениях сорбции и десорбции в динамических условиях. Имеющиеся в настоящее время разнообразные приборы для электрофореза и хроматографические анализаторы снабжены детекторами и позволяют не только разделить смесь веществ, но и количественно определить отдельные компоненты (например, белковый состав сыворотки крови).

Из других физико-химических методов – в клинико-биохимических исследованиях широко используется потенциометрия (ионометрия). Она основана на измерении ЭДС цепей, составленных из индикаторного электрода, потенциал которого зависит от активности (концентрации) исследуемого иона и электрода сравнения. Наиболее широкое распространение в клинико-биохимической практике получило потенциометрическое определение рН биологических жидкостей. Однако сейчас создано большое число ионоселективных электродов, позволяющих проводить потенциометрическое определение не только Н+, но практически всех катионов и многих анионов.

В клинической лабораторной практике для определения традиционных биохимических объектов – белков, ферментов, гормонов, медиаторов, фармакологических препаратов все чаще используются иммунохимические методы. Наиболее часто для этих целей используются так называемые “методы связывания” - радиоиммунологический анализ (РИА) и иммуноферментный анализ (ИФА). С помощью радиоиммунологического анализа возможно определение большого числа биологически активных соединений, но наиболее широко он используется в эндокринологии.

Радиоиммунологический анализ проводят с помощью стандартных диагностических наборов, в которые входит все необходимое (реагенты, посуда, инструкция по применению, выпускаемые заводским способом). При наличии таких наборов радиоиммунологическое определение сводится к последовательному выполнению определенных операций и замеру радиоактивности.

Метод ИФА отличается от РИА тем, что в качестве метки здесь используется не радиоактивный изотоп, а фермент. Это значительно упрощает определение. Метод ИФА не только широко используется при диагностике различных инфекционных заболеваний, но также для определения различных химических соединений - антибиотиков, белков и полипептидов, гормонов, микотоксинов, пестицидов, пищевых добавок и др.

Методы ИФА делятся на гетерогенные (твердофазные) и гомогенные, отличающиеся по принципу проведения анализа. Гетерогенные методы основаны на использовании антигенов и антител, иммобилизованных на нерастворимых носителях (как правило, пластик). Гомогенные методы основаны на эффекте модуляции антителами активности фермента (или кофактора), используемого в качестве метки антигена.

При наличии наборов, предназначенных для определения определенных веществ, также как и в случае РИА, в соответствии с инструкцией последовательно выполняются определенные операции и результат, обычно, количественно учитывается фотометрически.

Исследование ферментов. В клинико-биохимических исследованиях чаще всего исследуются индикаторные ферменты, которые, находясь и функционируя внутри клеток, в биологические жидкости (кровь) попадают вследствие нарушения проницаемости клеточных мембран или даже их разрушения в результате патологического процесса. Так как концентрация (активность) внутриклеточных ферментов значительно выше, чем в крови, то наличие гиперферментемии указывает на патологию. Характер, локализация и тяжесть патологического процесса определяют, какие ферменты и в каком количестве будут выходить в кровь, а в некоторых случаях и в мочу. Если повреждена только наружная клеточная мембрана, выходят в основном ферменты цитоплазмы, при более глубоких повреждениях клетки и повреждении мембран клеточных органелл (митохондрий, лизосом, ядер и др.) в крови появляются соответствующие ферменты. При остром процессе с гибелью большого числа клеток количественные изменения будут выражены более резко, чем при вяло текущем хроническом процессе. Эти изменения позволяют судить о глубине поражения и динамике повреждения.

Значительно реже наблюдается при патологии гипоферментемия. Это происходит в случае определения секреционных ферментов, которые реализуют свою каталитическую функцию, будучи секретированными из клеток в плазму крови. Понижение их активности служит признаком повреждения секретирующего органа.

Некоторые ферменты обладают низкой органной специфичностью и широко распространены в тканях, отличаясь только концентрацией, другие более специфичны и обнаруживают активность в одном или ограниченном числе источников. Наибольшую диагностическую ценность представляют те ферменты, которые специфичны для определенных органов или тканей.

В клинической лабораторной практике использование ферментных методов следует осуществлять комплексно, путем одновременного исследования нескольких ферментов, что значительно повышает диагностическую ценность их применения.

В некоторых случаях используется определение изоферментов. Изоферменты – молекулярные формы одного и того же фермента. Определение изоферментов в сыворотке крови имеет важное диагностическое значение, так как распределение в тканях отдельных изоферментов более специфично, чем общей ферментативной активности. Например, в клинико-биохимической диагностике довольно широко используется определение активности такого фермента, как щелочная фосфатаза. В сыворотку крови щелочная фосфатаза поступает в основном из костной ткани, печени и кишечника. Поэтому при патологии этих органов активность щелочной фосфатазы будет возрастать и дифференциальную диагностику на основании определения общей активности провести нельзя. Однако “костный” и “печеночный” изоферменты различаются по своей электрофоретической подвижности и температурной устойчивости, что позволяет проводить их раздельное определение. Увеличение активности “костного” изофермента свидетельствует о поражении костной ткани, в то время, как увеличение “печеночного” - говорит о патологии печени.

Количественные методы, используемые в клинической энзимологии, могут быть основаны на фотометрическом определении образующихся в результате реакций продуктов. Если они не окрашены, используются дополнительные химические реакции с определенными реагентами с целью получения окрашенных продуктов. Недостатком этих методов является то, что измерение проводят по конечной точке.

Более точными являются кинетические методы исследования, когда определяют не конечный продукт ферментативной реакции, а кинетику самой реакции. При этом производят определение по ходу реакции, выбирая для замеров 2 временные точки и более. Кинетические методы основаны на оптическом тесте Варбурга. Он заключается в том, что один из продуктов дегидрогеназной реакции восстановленный НАДН сильно поглощает в ближней ультрафиолетовой области. Так как многие НАД – зависимые дегидрогеназы используются в клинико-биохимических исследованиях, оптический тест Варбурга нашел широкое применение. Он лежит в основе методических принципов, на основе которых разработано большое количество наборов реактивов, выпускаемых промышленным способом.

При изучении ферментов необходимо подбирать наиболее оптимальные условия исследования. К их числу обычно относят следующие:

1. Исследование ферментов следует проводить при оптимальном рН, создаваемом буферными растворами и оптимальной температуре (25-37 °С).

2. Определение активности ферментов нужно проводить при начальных скоростях катализируемых реакций.

3. Концентрация субстрата примерно в 10 раз должна превышать значение константы Михаэлиса.

4. Исследование малоактивных ферментов следует проводить с применением активаторов, например, активность креатинкиназ в присутствии сульфгидрильных соединений (цистеин и др.) возрастает в десятки раз.

Для определения изоферментов используют электрофорез на различных носителях – полиакриламиде, агаре или крахмале, а также хроматографические или иммунохимические методы. Активность отдельных изоферментов после электрофореза определяют или визуально, отмечая наиболее интенсивно окрашенные полосы, либо путем денситометрии. Для иммунологической дифференциации отдельных изоферментов используют моноспецифические сыворотки.

Аспартатаминотрансфераза обратимо катализируетреакцию переноса аминогруппы с L-аспартата наa-кетоглутарат. Обнаруживается у животных во всех органах и тканях, но наибольшая активность наблюдается в печени, миокарде, скелетной мускулатуре. Поэтому определение активности фермента широко используется при заболеваниях печени, сердца, мышц.

Особенно высокие значения активности фермента наблюдаются при заболеваниях, сопровождающихся поражением клеток печени. Повышение активности фермента в сыворотке крови, наблюдается при травмах скелетной мускулатуры, паралитической миоглобинурии у лошадей, беломышечной болезни овец, мышечной дистрофии у свиней.

Аланинаминотрансфераза обратимо катализирует реакцию переноса аминогруппы с L-аланина на a-кетоглутарат. Также как и у аспартатаминотрансферазы, наибольшая активность наблюдается в печени, мышцах, миокарде и используется для диагностики поражений этих органов. Так как сердечная мышца содержит больше аланинаминотрансферазы, то гиперферментемия более специфична для заболеваний сердца (инфаркт миокарда у свиней). При поражениях печени активность аланинаминотрансферазы возрастает быстрее и труднее приходит в норму.

Альдолаза (фруктозобисфосфатальдолаза) – фермент активно расщепляет фруктозо-1,6-бисфосфат на два триозофосфата. В лабораторно-клинической практике фермент исследуют в сыворотке крови. Однако необходимо иметь ввиду, что в значительно большем количестве он содержится в форменных элементах. Поэтому даже небольшой гемолиз может искажать результаты исследования. Наиболее постоянное и значительное повышение активности альдолазы наблюдается при острых гепатитах, травмах скелетной мускулатуры и больших физических нагрузках у лошадей. Некоторыми авторами отмечается резкое повышение активности фермента при кетозе у коров.

Гамма-глутамилтрансфераза катализирует перенос гамма-глутамиловой группы с гамма-глутамилпептида на акцепторный пептид и аминокислоту. Гамма-глутамилтрансфераза - мембраносвязанный фермент, встречающийся в большинстве тканей млекопитающих. Наибольшая активность обнаружена в почках и поджелудочной железе. Повышается она при основных формах нефропатий и панкреатитах. Определение гамма-глутамилтрансферазы следует проводить также при заболеваниях печени и желчных путей. Особенно резко возрастает активность фермента при закупорке желчных протоков.

Щелочная фосфатаза – фермент, катализирующий гидролиз эфиров ортофосфорной кислоты в щелочной среде (при рН 9,0 – 10,0). Щелочная фосфатаза содержится во всех органах и тканях животных, особенно много ее в костной ткани, печени, почках, слизистой оболочке кишечника. Активность щелочной фосфатазы в сыворотке крови возрастает, обычно, при заболеваниях костей, сопровождающихся пролиферацией остеобластов и при поражении печени, особенно с явлениями холестаза. У молодняка она выше, чем у взрослых животных, что обусловлено гиперфункцией остеобластов.

Гиперферментемия наблюдается при рахите, остеосаркомах, остеомаляции. При рахите активность фермента повышается параллельно тяжести заболевания и нормализуется с выздоровлением. Телята, содержащиеся в условиях гиподинамии, имеют повышенную активность фермента в сыворотке крови. При повреждении паренхимы печени отмечается умеренное повышение щелочной фосфотазы, при желтой атрофии печени – резкое. Гипоферментемия наблюдается при тяжелой мышечной дистрофии у овец.

Амилаза – фермент катализирует гидролиз a-1,4 гликозидных связей крахмала. Характерной особенностью фермента является то, что он легко фильтруется в клубочках почек и легко переходит в мочу. Больше всего его содержится в поджелудочной железе сельскохозяйственных животных. Он секретируется с поджелудочным соком и в обычных условиях поступает в тонкий кишечник, где участвует в пищеварении. Эти два обстоятельства (локализация в поджелудочной железе и свободная фильтрация в почках) обусловили исследование этого фермента в крови и моче при панкреатитах. Особенно резкое повышение активности наблюдается при остро протекающих заболеваниях поджелудочной железы с разрушением клеток и выходом фермента в кровь.

Лактатдегидрогеназа – фермент обратимо катализирует окисление молочной кислоты в пировиноградную. Существует 5 различных, отличающихся по электрофоретической подвижности изоферментов лактатдегидрогеназы. Помимо определения общей активности в клинических целях определяют активность одного из изоферментов лактатдегидрогеназы ЛДГ (a- гидроксибутиратдегидрогеназы). Органоспецифичность лактатдегидрогеназы сравнительно невелика, что затрудняет интерпретацию случаев гиперферментемии. Наивысшая активность обнаруживается у животных в скелетной мускулатуре и миокарде. Поэтому активность фермента в сыворотке крови значительно возрастает при поражении сердца и мышц. Определения лактатдегидрогеназы для диагностики инфаркта миокарда редки, так как он у животных почти не встречается (за исключением свиней). У лошадей резко повышается при травмах скелетной мускулатуры и после больших физических нагрузок. Отмечено увеличение лактатдегидрогеназной активности в сыворотке крови при паренхиматозном гепатите, интоксикациях, лейкозе. Следует иметь в виду, что увеличение активности лактатдегидрогеназы в сыворотке крови означает, что в каком-то органе произошло повреждение клеток (некроз), изменилась проницаемость клеточных мембран, в результате чего фермент в больших количествах попал в кровь. Увеличение активности гидроксибутиратдегидрогеназы (ЛДГ1) наблюдается также при тяжелых поражениях печени, многочисленных метастазах.

Глутаматдегидрогеназа катализирует гидролиз L-глутаминовой кислоты с образованием 2-оксоглутарата и аммиака. Наивысшая активность у животных обнаруживается в печени и почках. Фермент в основном локализован в митохондриях и выход его в кровь происходит при тяжелых повреждениях печеночных клеток. Умеренно повышается при острых паренхиматозных поражениях печени и более резко при хронических. Используется для диагностики гепатоцеллюлярных некрозов. Исследование глутаматдегидрогеназы часто проводят в комплексе с другими ферментами, характеризующими определенную патологию (печени, почек). Для оценки патологического состояния иногда используют коэффициент, представляющий отношение суммы активностей аспартат и аланинаминотрансфераз к активности глутаматдегидрогеназы. При острых гепатитах он обычно повышен, при хронических и закупорке желчных путей – понижен.

Сорбитолдегидрогеназа (L-йодитолдегидрогеназа) – катализирует окисление L-идитола. Активность фермента наиболее высока в печени животных, органоспецифичность сорбитолдегидрогеназы выражена в высокой степени. В сыворотке здоровых животных она не обнаруживается или ее активность очень низка. Гиперферментемия свидетельствует о повреждении клеток печени, некрозе, нарушении процесса обмена веществ в печени. В условиях эксперимента при отравлении лошадей четыреххлористым углеродом активность фермента возрастала более чем в 500 раз. Повышение активности сорбитолдегидрогеназы возможно также при поражении почек, но патологию их можно определить с помощью других методов.

Холинэстераза разрушает нейромедиатор ацетилхолин и родственные ему вещества. В эритроцитах содержится ацетилхолинэстераза, обладающая аналогичным действием. Она отличается от холинэстеразы тем, что ингибируется избытком ацетилхолина. Диагностическая значимость холинэстеразы сыворотки крови определяется тем, что она синтезируется клетками печени и функционирует в крови. Поэтому при повреждениях печени активность ее в сыворотке крови понижается. Особенно характерно снижение активности фермента при отравлении фосфороорганическими ядами.

По этой же причине гипохолинэстераземия наблюдается при недостатке белка в рационе, кахексии и других патологических состояниях, вызывающих снижение белково-синтезирующей функции печени. Снижение холинэстеразной активности сыворотки крови наблюдается при кетозе у коров. Выздоровление сопровождается нормализацией активности фермента в сыворотке крови.

Трипсин синтезируется в поджелудочной железе и секретируется с панкреатическим соком в виде неактивного трипсиногена. Трипсин действует на различные пептидные связи и чаще всего те, которые образованы карбоксильными группами лизина и аргинина. При панкреатитах, вследствие феномена “уклонения ферментов”, он попадает в кровь и активность трипсина в ней возрастает. Поэтому он наряду с другими ферментами, синтезируемыми в поджелудочной железе, используется для диагностики ее заболевания.

Креатинкиназа – фермент обратимо катализирует фосфорилирование креатина с помощью АТФ. Наибольшая активность фермента у животных отмечается в скелетной мускулатуре и сердце. В клинико-лабораторной практике определение креатинкиназы проводят при заболеваниях мышц. Любые формы миопатий сопровождаются значительным повышением креатинкиназы в сыворотке крови. Может использоваться для диагностики инфаркта миокарда у свиней, паралитической миоглобинурии у лошадей. Содержание фермента резко возрастает в сыворотке крови у лошадей после больших физических нагрузок.

Исследование белков и небелковых азотистых веществ. Белки сыворотки крови широко используются в клинико-биохимических исследованиях, так как они тесно связаны с белковым и другими обменами и несут обширную информацию о состоянии организма. В зависимости от целей исследования определяется или общий белок или белковый спектр сыворотки крови или индивидуальные белки. Количественные изменения в содержании белковых фракций и отдельных белков называют диспротеинемиями. Их определяют чаще всего с помощью различных электрофоретических (в агаре, крахмальном, полиакриламидном геле и др.) или иммунохимических методов (по Манчини, иммуноэлектрофорез и др.). Общий белок определяют биуретовым методом, методом Лоури, спектрофотометрически.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 627; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.04 сек.