Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства смешанного произведения

1)

.

Доказательство этих соотношений проводится аналогично выводу формулы (4). Чтобы их запомнить заметим, что при «циклической перестановке» векторов (вектор передвигается на следующее место, а последний – на первое) знак не меняется, а при перестановке двух соседних векторов знак смешанного произведения меняется.

2) Геометрический смысл смешанного произведения.

Модуль смешанного произведения равен объему параллелепипеда, построенного на этих векторах, как на ребрах.

 

 
 

 


 

Для доказательства этого построим вектор , длина которого в соответствии с геометрическим смыслом векторного произведения, равна площади параллелограмма, построенного на векторах и , т.е. площади основания параллелепипеда: . Из определения смешанного произведения , где - угол между векторами и . На рисунке рассмотрен случай, когда угол . Для этого случая получим, что высота параллелепипеда . Окончательно: – объем параллелепипеда, изображенного на рисунке. В случае получим (т.к. ) и . Окончательно получаем: .

<== предыдущая лекция | следующая лекция ==>
Смешанное произведение | Условие компланарности векторов
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 327; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.