Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тормозное излучение и поглощение




Рассмотрим свободно-свободные переходы. Тормозное излучение электронов одно из основных причин излучения плазмы в непрерывном спектре (“континууме”). Найдем спектр тормозного излучения исходя из чисто качественных соображений. Сначала вычислим высокочастотную асимптотику классического спектра рассеяния электронов, имеющих скорость u, на точечном кулоновском центра с зарядом Ze (формула Крамерса). Вычисленный для всех w спектр примем за эталонный. Затем введем так называемый фактор Гаунда g (w), который позволяет получить истинный спектр, учитывающий, что электрон взаимодействует с экранированным ядром. Поскольку, электрон может проникать внутрь электронной оболочки рассеивающего иона, то эффективное зарядовое число при рассеянии должно лежать в пределах Zi << Zeff < Z. Высоким частотам в спектре соответствуют, очевидно, близкие пролеты r << a, где a = Ze2 / mu2 – характерная “кулоновская” длина. При этом излучаемая частота weff оказывается по порядку величины равной угловой скорости вращения электрона вблизи иона ~ wrot. Используя законы сохранение энергии и момента импульса

; (7.3)

mur = mumaxr0 (7.4) и пренебрегая для близких пролетов левой частью в (7.3), получаем

umax = ru / r0; (7.5)

mr2u2 / 2(r0)2 = Ze2 / r0; (7.6)

. (7.7) Частоту вращения электрона в точке наибольшего сближения можно записать в виде

, (7.8) где

(7/9) представляет собой характерную частоту спектра излучения, соответствующую прицельному расстоянию r = a.

Энергию, излучаемую в дипольном приближении электроном, имеющим скорость u и пролетающим мимо иона с прицельным расстоянием r, можно оценить следующим образом:

, (7.10) где максимальное ускорение электрона равно

, (7.11) а характерное время пролета можно оценить как

. (7.12) Используя (7.5), (7.7), (7.11) и (7.12), получим

, (7.13) что позволяет записать энергию в следующем виде:

. (7.14) Домножив энергию на соответствующее дифференциальное сечение, получим величину

, (7.15) имеющую размерность [эрг×см2]. Если умножить эту величину на поток электронов neue и плотность ионов ni, получится мощность тормозного излучения из единицы объема для электронов с прицельным расстоянием r и скоростью u: . (7.16)

Используя введенное выше приближение

, (7.17) нетрудно перейти от переменной r к w

. (7.18) Заменив величину 4 p ее приближенным числовым значением4p» 12, получим выражение

, (7.19) которое не зависит от частоты.

Строгая классическая теория дает для спектральной интенсивности ту же зависимость, но уже с дополнительным коэффициентом ;

. (7.20) Эта формула называется формулой Крамерса. Физический смысл выражения легко интерпретировать, если переписать его в следующем виде:

. (7.21) Это – энергия, излученная в единичном интервале частот единичным потоком электронов, взаимодействующим с одним ионом. Выражение (7.20) справедливо, как это следует из его вывода, для u << umax (см. (7.3)), т.е. для частот . (7.22) На практике приближение Крамерса оказывается справедливым для преобладающей части спектра тормозного излучения. Более того выражение (7.20) можно использовать для правильного описания всего спектра, если ввести поправочный функциональный множитель g(w), называемый гаунд - фактором. В пределе малых частот (почти прямолинейные пролеты), когда , гаунд-фактор, например, представляется выражением

. (7.23)

Таким образом, введя в выражение (7.20) гаунд-фактор и интегрируя dk(w) / dw по распределению электронов по скоростям, получим выражение

, (7.24) описывающее спектральную плотность мощности тормозного излучения плазмы. В случае максвелловского распределения по скоростям, интегрируя по спектру, получим практическую формулу для определения полных потерь на тормозное излучение электронов на ионах:

. (7.25)

Обратный процесс, называется тормозным поглощением, является трехчастичным и заключается в уменьшении энергии фотона, пролетающего в поле заряженной частицы, с передачей энергии свободному электрону, находящемуся в сфере взаимодействия.

 




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 1485; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.