Теорема. Если функция y = f(x) непрерывна на отрезке [a; b], то она интегрируема на этом отрезке.
Приведем пример нахождения определенного интеграла на основании определения.
Пример 1. Вычислить
Решение. Запишем выражение для интегральной суммы, предполагая, что все отрезки [хi-1; хi] разбиения имеют одинаковую длину Δхi, равную 1/n, где n – число отрезков разбиения, причем для каждого из отрезков [хi-1; хi] разбиения точка ξi совпадает с правым концом этого отрезка, т.е.
ξi = хi = ,
где i=1, 2,..., n. (В силу интегрируемости функции у = х2, выбор такого «специального» способа разбиения отрезка интегрирования на части и точек ξ1, ξ2,..., ξп на отрезках разбиения не повлияет на искомый предел интегральной суммы). Тогда
Известно, что сумма квадратов чисел натурального ряда равна
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление