КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Введение в предмет
Численные методы – раздел математики, который со времен Ньютона и Эйлера до настоящего времени находит очень широкое применение в прикладной науке. Традиционно физика является основным источником задач построения математических моделей, описывающих явления окружающего мира, она же является основным потребителем алгоритмов и программ, позволяющих эти задачи с определенным успехом решать. При этом задачей физика является не только правильный выбор программы, которая призвана решать физическую проблему, но и подробный анализ и корректировка используемых алгоритмов, в соответствии с реалиями поставленной задачи и теми математическими правилами, которые либо допускают существование решения с заданной точностью, либо говорят о невозможности такого решения. Примеры современных физических задач, для решения которых используются численные методы – моделирование астрономических событий (рождение и развитие Вселенной), моделирование процессов в микромире (распад и синтез частиц), моделирование установок и процессов термоядерного синтеза. Более «прикладные» задачи – моделирование физических процессов в твердотельных структурах (широко используется в проектировании и изготовлении интегральных схем), моделирование процессов в газах и плазме. Учитывая большую сложность и дороговизну современных экспериментальных методик, и, с другой стороны, постоянный рост производительности вычислительных систем, нетрудно определить тенденцию к увеличению в настоящее время доли модельных (вычислительных) экспериментов. Большое количество численных методов разработано для решения задач математической физики, к которым, например, относятся задачи тепло- и массопереноса, исследования турбулентного движения. К инженерным приложениям численных методов можно отнести расчеты магнитных и электростатических линз для заряженных частиц, различного рода радиотехнические расчеты, включая, например, проектирование СВЧ-волноводов. Любопытно, что как в теоретической физике, так и в инженерной практике решаются численными методами различные задачи теоретической механики, например, задачи столкновения (в том числе динамический хаос). Естественно, такое приложение вычислительной техники к физике, как управление экспериментом и сбор данных, в данном курсе не рассматривается.
План построения вычислительного эксперимента: 1) Создание модели, фиксирующей главные исследуемые факторы. Одновременно формулируются рамки применимости модели. 2) Предварительное исследование математической модели: поверка корректности постановки задачи, существования и единственности решения. 3) Разработка метода расчета сформулированной задачи, построение эффективных вычислительных алгоритмов. 4) Создание программы, осуществляющей моделирование физического объекта, включающей в себя реализации используемых численных методов, проверки корректности ввода исходных и вывода результирующих данных 5) Сравнение полученных результатов моделирования с тестовыми примерами и экспериментальными данными; решение вопроса о правильности практического моделирования (иначе повторяются пункты 3 и 4). 6) Решение вопроса о достоверности предложенной математической модели. Если модель не описывает экспериментальные данные, возврат на пункт 1. Таким образом, численный эксперимент – это не однократное вычисление по некоторому набору формул, а многостадийный процесс программирования, анализа результатов и их погрешностей. Задача называется корректно поставленной, если для любых входных данных х из некоторого класса решение y существует, единственно и устойчиво по входным данным. (Класс может представлять собой координатное бесконечномерное пространство, множество непрерывных функций и др.) Численный алгоритм – однозначная последовательность действий, которые могут привести к одному решению. Отсутствие устойчивости обычно означает, что сравнительно небольшой погрешности δ x соответствует весьма большое δ y, а значит получаемое решение будет далеко от истинного. К такой задаче численные методы применять бессмысленно, ибо погрешности численного расчета будут катастрофически нарастать. Устойчивость задачи определяется (1) математической формулировкой, (2) используемым алгоритмом расчета. Пример неустойчивой задачи в первом случае: Система имеет решение , однако Система имеет решение , то есть разница в коэффициенте менее 1% приводит к изменению решения в 300%. Пример алгоритмической неустойчивости – вычисление производных численными методами: какой бы метод мы не использовали, приходится вычитать весьма мало различающиеся числа. В настоящее время развиты методы решения многих некорректных задач, которые основаны на решении вспомогательной корректной задачи, близкой к исходной. Если выполняется условие для норм (модулей), то задача устойчива. Однако если константа С очень велика, то фактически наблюдается слабая устойчивость. Такую задачу называют плохо обусловленной. Пример – дифференциальное уравнение с начальными условиями . Общее решение дифференциального уравнения есть . Начальные условия приводят к обнулению первого слагаемого, но если из-за погрешности начальных данных это будет не так, то при возрастании x влияние первого слагаемого будет катастрофически нарастать.
Решение задач можно условно разделить на этапы: - формулирование задачи; - разработка вычислительного алгоритма.
Формулирование задачи – определение цели, которой необходимо достичь, с учетом четкого изложения условий задачи, необходимых исходных данных и границ изменения параметров. Математическая постановка задачи заключается в математическом описании сформулированной задачи с помощью математических выражений, т.е. в составлении математической модели задачи. Физический и математический анализ заключаются в анализе существования и единственности решения, определении математических методов, которые можно использовать для решения сформулированной задачи. Численный анализ включает выбор наиболее приемлемого метода решения задачи, разработку его во всех деталях и запись в виде алгоритма. Метод решения – это точное описание, по которому каждому набору исходных данных из области допустимых значений можно сопоставить решение. Алгоритм – точное предписание последовательности операций, которую надо провести над исходными данными и промежуточными результатами вычислений, чтобы получить искомый результат. При разработке алгоритма вычислений необходим учет ограничений, налагаемых вычислительными средствами (быстродействие, объем памяти, точность представления чисел и т.п.). Эффективность математических методов и реализующих их алгоритмов оценивается на основе: · количества действий, которые надо выполнить для получения решения; · количества различных данных, которые необходимо сохранять на отдельных этапах вычислительного процесса.
Дата добавления: 2014-01-03; Просмотров: 574; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |