КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
При любых расчетах надо устанавливать такую точность вычислений, чтобы погрешность округления была существенно меньше всех остальных погрешностей
Точность вычислений, классификация погрешностей. Во всех случаях математическая точность решения должна быть в 2-4 раза выше, чем ожидаемая физическая точность модели. Более высокая математическая точность, как и более низкая, будут неадекватны данной модели.
Существуют четыре источника погрешности результата: 1) погрешность математической модели – связана с ее несоответствием физической реальности, так как абсолютная истина недостижима. Если математическая модель выбрана недостаточно тщательно, то, какие бы методы мы не применяли для расчета, все результаты будут недостаточно надежны, а в некоторых случаях и совершенно неправильны. 2) погрешность исходных данных, принятых для расчета. Это неустранимая погрешность, но это погрешность возможно и необходимо оценить для выбора алгоритма расчета и точности вычислений. Как известно, ошибки эксперимента условно делят на систематические, случайные и грубые, а идентификация таких ошибок возможно при статистическом анализа результатов эксперимента. 3) погрешность метода – основана на дискретном характере любого численного алгоритма. Это значит, что вместо точного решения исходной задачи метод находит решение другой задачи, близкого в каком-то смысле (например по норме банахова пространства) к искомому. Погрешность метода – основная характеристика любого численного алгоритма. Погрешность метода должна быть в 2-5 раз меньше неустранимой погрешности. 4) погрешность округления – связана с использованием в вычислительных машинах чисел с конечной точностью представления. Вот иллюстрация этих определений. Пусть имеется реальный маятник, совершающий затухающие колебания, начинающий движение в момент t = t 0. Требуется найти угол отклонения φ от вертикали в момент t 1. Движение маятника мы можем описать следующим дифференциальным уравнением: , где l – длина маятника, g – ускорение силы тяжести, μ – коэффициент трения. Как только принимается такое описание задачи, решение уже приобретает неустранимую погрешность, в частности потому, что реальное трение зависит от скорости не совсем линейно (погрешность модели). Кроме того, воспроизведя реальный эксперимент, мы зададим l, g (в известной точке планеты), μ с некоторой точностью, и получим набор значений с погрешностью, которую можем оценить из анализа статистики некоторого числа однотипных опытов (погрешность исходных данных). Взятое в модели дифференциальное уравнение нельзя решить в явном виде, для его решения требуется применить какой-либо численный метод, имеющий заранее известную погрешность, которая должна быть меньше неустранимой погрешности. После совершения вычислений мы получим значения с погрешностью большей, нежели погрешность метода, так как к ней прибавится погрешность округления.
Рассмотрим правила расчета погрешности округления: 1) Сложение и вычитание приближенных чисел Введем в рассмотрение два числа a и b, называемых приближенными, то есть это есть оценка точных значений A и B, известных с абсолютными погрешностями ±εa и ±εb. Знаки этих погрешностей нам неизвестны, следовательно для обеспечения достоверности конечного результата мы должны взять наихудший случай, когда погрешности складываются. Таким образом формулируются следующие правила: 1. Абсолютная погрешность суммы приближенных чисел равна сумме абсолютных погрешностей слагаемых. 2. Абсолютная погрешность разности приближенных чисел равна сумме абсолютных погрешностей слагаемых. Относительной погрешностью приближенного числа a будет являться величина . По этому же правилу определим относительную погрешность суммы приближенных чисел a и b как . При этом можно показать, что 3. Относительная погрешность суммы слагаемых одного знака заключена между наименьшей и наибольшей относительными погрешностями слагаемых: . 4. Для разности двух приближенных чисел одного знака величина относительной погрешности может быть сколь угодно большой. 2) Умножение и деление приближенных чисел Очевидно, что приближенное число . Тогда для произведения . Если пренебречь последним малым слагаемым в скобках, то можно сформулировать следующее правило: 1. Относительная погрешность произведения приближенных чисел равна сумме относительных погрешностей множителей . Так как деление на число b равнозначно умножению на 1/b, то справедливо утверждение: 2. Относительная погрешность частного приближенных чисел равна сумме относительных погрешностей делимого и делителя. Следовательно, при умножении и делении приближенных чисел необходимо принимать во внимание количество значащих цифр, характеризующих относительную точность числа, а не количество десятичных знаков, обуславливающих его абсолютную погрешность. Совершенно очевидно, что при большом количестве действий такого сорта правила нельзя считать удовлетворительными, так как погрешности будут иметь разные знаки и компенсировать друг друга. Статистическая оценка показывает, что при N одинаковых действиях среднее значение суммарной ошибки больше единичной в раз, если нет систематических причин для накопления погрешности. Систематические причины возникают, если, например в алгоритме вычитаются близкие по величине числа.
Дата добавления: 2014-01-03; Просмотров: 490; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |