КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
АЛГОРИТМ. 1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого «есть эффект» и тех
расчета критерия φ* [16] 1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого «есть эффект» и тех, у кого «нет эффекта». Если признак измерен количественно, использовать критерий l, для поиска оптимальной точки разделения. 2. Начертить четырехклеточную таблицу из двух столбцов и двух строк. Первый столбец – «есть эффект»; второй столбец – «нет эффекта»; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка). 3. Подсчитать количество испытуемых в первой группе, у которых «есть эффект» и занести это число в левую верхнюю ячейку таблицы. 4. Подсчитать количество испытуемых в первой выборке, у которых «нет эффекта», и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе. 5. Подсчитать количество испытуемых во второй группе, у которых «есть эффект», и занести это число в левую нижнюю ячейку таблицы. 6. Подсчитать количество испытуемых во второй выборке, у которых «нет эффекта», и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке). 7. Определить процентные доли испытуемых, у которых «есть эффект», путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями. 8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий c2. 9. Определить по Табл. 4 Приложения 3 величины углов φ для каждой из 10. Подсчитать эмпирическое значение φ* по формуле: , где: φ1 - угол, соответствующий большей процентной доле, φ2 – угол, соответствующий меньшей процентной доле, n1 – количество наблюдений в выборке 1, n2 – количество наблюдений в выборке 2. 11. Сопоставить полученное значение φ* с критическими значениями:
Пример 1: сопоставление выборок по качественно определяемому признаку. После проведения формирующего эксперимента учащимся 5 а (экспериментальная группа) и 5 б (контрольная группа) по трем не связанным друг с другом словам написать мини-сочинение. В 5а (ЭГ) из 25 человек с задачей справились 18 человек, в 5 б (КГ) из 27 человек с задачей справились 16 человек. достоверны ли различия между группами? Выполним первые 8 шагов алгоритма и составим четырехклеточную таблицу. Таблица 14.
Шаг 9. Определим по Таблице 4 приложения 3 величины φ: φ1(72 %) = 2,026; φ2(48,1 %) =1,533 Шаг 10. Подсчитаем эмпирическое значение φ* по формуле: Шаг 11. Сопоставим φ*эмп с критическим значением.
φ*эмп > φ*кр 0,05. Ответ: Н0 отвергается. Доля учащихся, справившихся с заданием, в экспериментальной группе больше, чем в контрольной (р ≤0,05).
Пример 2 - сопоставление двух выборок по количественно измеряемому признаку При проведении диагностики экстраверсии и нейротизма с использованием опросника Айзенка в двух студенческих группах (n1 =29, n2 =31) по шкале лжи получены баллы от 0 до 8. Известно, что при показателях больше 4 баллов по этой шкале ответы испытуемых считаются недостоверными. В первой группе 9 человек получили по шкале лжи больше 4 баллов, во второй группе – 7 человек. Можно ли считать, что различия между группами по уровню лжи достоверны? Граница, по которой мы делим выборку на части «есть эффект – нет эффекта» задана самим опросником – 4 балла. Далее следуем по алгоритму. Занесем данные в таблицу. Обозначим группой 1 ту, в которой больше людей, у которых «есть эффект». Таблица 15.
Шаг 9. Определим по Таблице 4 приложения 3 величины φ: φ1(31%) = 1,182; φ2(22,6 %) =0,991 Шаг 10. Подсчитаем эмпирическое значение φ* по формуле: Шаг 11. Сопоставим φ*эмп с критическим значением.
Ответ: Н0 принимается. Доля лиц, имеющих повышенные показатели по шкале лжи в первой группе, не выше такой же доли во второй группе. Другими словами, различий между группами по этому показателю нет!
Дата добавления: 2014-01-03; Просмотров: 912; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |