КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Р.Н. Дождикова
Методические указания к выполнению контрольной работы №1 по электротехническим материалам. Контрольная работа включает в себя 3 задания. Первое задание на тему «Электропроводность. Проводниковые, полупроводящие и изоляционные материалы», второе задание «Диэлектрическая проницаемость. Диэлектрики» и наконец третье задание «Магнитные свойства материалов. Магнитные материалы». Так как вы прорешивали точно такие же задачи в самостоятельных работах, затруднений в выполнении этой контрольной работы у вас не должно быть. При выполнении контрольной работы допускается пользоваться следующими справочниками: 1. Электротехнический справочник: В 4 т. Т.1/ Под редакцией Герасимова В.Г. и др. – М.: МЭИ, 2003. – 440 с.: ил. 2. Электротехнический справочник: В 4 т. Т.2/ Под редакцией Герасимова В.Г. и др. – М.: МЭИ, 2003. – 440 с.: ил. Пример решения задания 1. Проверьте, сработает ли устройство защитного отключения (УЗО) при следующих условиях: Шахтный одножильный кабель диаметром 12 мм длиной 500 м, сечением жилы 35 мм2, с изоляцией из резины типа РТИ-1 попал в воду. Напряжение на жиле – 380 В. УЗО срабатывает, если утечка через изоляцию превысит 10 мА. Решение: Для того, чтобы сработало УЗО необходимо, чтобы сопротивление изоляции провода было бы не более такого, при котором ток утечки был бы равен 10 мА. Найдём это сопротивление: Rиз. ≤ 380 В / 0,01 А=38000 Ом. Поскольку ток через изоляцию стекает с жилы, поле тока можно принять радиально-цилиндрическим, и сопротивление изоляции будет равно: (75) Неизвестным параметром в этом выражении является удельное сопротивление резины – ρрезины. Рассчитаем удельное электрическое сопротивление электрической изоляции из резины РТИ-1, при котором может сработать УЗО. Для этого вначале определим радиус токопроводящей жилы через площадь её сечения - S: . Радиус внешней эквипотенциальной поверхности коаксиальной системы можно принять равным 6 мм, поскольку кабель находится в воде, а его диаметр равен 12 мм. Рассчитываем удельное электрическое сопротивление:
Таким образом, УЗО может сработать, если удельное сопротивление в результате увлажнения снизится до 2∙108 Ом∙м. Вывод: Сравнивания полученное значение со значениями в таблице п. 3, видим, что удельное сопротивление резины РТИ-1 даже после 14-и дней увлажнения при любой температуре имеет значения на 4 порядка выше, чем полученное в нашем расчёте. Таким образом, при попадании резинового кабеля в воду срабатывания УЗО не произойдёт. То есть условия электробезопасности при эксплуатации резинового кабеля в воде соблюдаются. По-видимому, отключение УЗО может произойти, если в изоляции будут дополнительные повреждения, например, трещины от старения. Пример решения задания 2: Определите напряжённость поля в воздушном включении, которое находится в изоляции одножильного кабеля с номинальным напряжением 10 кВ. Напряжение на жиле составляет 6 кВ. Жила диаметром 10 мм изолирована поликарбонатной пленкой "макрофоль" типа SN и имеет толщину изоляции 3 мм. При намотке пленки на жилу на поверхности жилы образовалось микроскопическое воздушное включение. Решение: Если пренебречь искажением поля, которое вносит небольшое воздушное включение, то напряжённость поля на поверхности провода, создающего радиально-цилиндрическое поле, равна: (76) Здесь r1 и r2 - соответственно радиусы жилы и оболочки, U - напряжение на жиле.
Рисунок 22 – Радиально-цилиндрическое поле Напряжённость поля в воздушном включении по отношению к напряженности поля в изоляционной плёнке определяется обратным отношением диэлектрических проницаемостей материала воздуха eв и изоляции eп: (77) Из этого выражения видно, что для выполнения задания необходимо знать значения диэлектрических проницаемостей поликарбонатной пленки eп и воздуха eв. Воздух является газообразным диэлектриком. Его электрическая прочность при расстоянии между электродами в 1 см и атмосферном давлении равна примерно 3 МВ/м. Это на порядок меньше, чем у твердых диэлектриков. Диэлектрическая проницаемость воздуха при 200 С и давлении 101325 Па (760 мм рт.ст.) eв = 1,00059. При повышении давления с 0,1 до 10 МПа диэлектрическая проницаемость воздуха увеличивается 1,00058 до 1,0549. Кроме того, диэлектрическая проницаемость воздуха увеличивается с повышением влажности из-за большой диэлектрической проницаемости водяных паров. Поликарбонатная пленка (ПК) изготавливается толщиной 0,002 - 0,8 мм из поли-6-диоксидифенил-2,2-пропана без пластификаторов фирмой Bayer (ФРГ) под названием макрофоль. Плёнки бывают различных типов. Плёнки всех типов с одной стороны имеют шероховатую поверхность. Наилучшими электрическими и механическими свойствами обладают конденсаторные пленки KG и SKG. Принимаем, что воздух в пузырьке находится при нормальном давлении. Следовательно, eв = 1,00059. Из п. 3 eп = 3,0. Вывод: Напряжённость поля в воздушном пузырьке составит 7,655 МВ/м, что выше электрической прочности воздуха - 3 МВ/м. Это означает, что воздушный пузырёк будет пробиваться при напряжении на жиле выше, чем 3,8 кВ. Пример решения задания 3: Оцените потери в стали 1521 при частоте 50 Гц и напряженности внешнего магнитного поля 2500 А/м и сравните эти потери с потерями в стали 1511 при тех же условиях. В обозначении марок цифры означают: Первая – класс по структурному состоянию и виду прокатки: 1 – горячекатаная, изотропная; 2 – холоднокатаная изотропная; 3 – холоднокатаная анизотропная с ребровой текстурой; 5 - холоднокатаная анизотропная с плоской кубической текстурой. Вторая – содержание кремния: 0 – до 0,4% (нелегированная); 1 – (0,4…0,8) %; 2 - (0,8…1,8) %; 3 - (1,8…2,8) %; 4 - (2,8…3,8) %; удельные потери нормируются при магнитной индукции В=1,5 Тл и частоте f = 50 Гц; 5 - (3,8…4,8) %. Третья – группу по основной нормируемой характеристике: 0 – удельные потери при магнитной индукции В=1,7 Тл и частоте f = 50 Гц; 1 - удельные потери при магнитной индукции В=1,5 Тл и частоте f = 50 Гц; 2 - удельные потери при магнитной индукции В=1,0 Тл и частоте f = 400 Гц; 4 -удельные потери при магнитной индукции В=0,5 Тл и частоте f = 3000 Гц; 6 – магнитная индукция в слабых полях при напряженности поля Н=0,4 А/м; 7 - магнитная индукция в средних полях при напряженности поля Н=10 А/м. Четвёртая - порядковый номер типа стали. Таким образом, заданные электротехнические стали характеризуются следующим образом: 1511 – горячекатаная изотропная сталь, с содержанием кремния - (3,8…4,8) %, удельные потери нормируются при магнитной индукции В=1,5 Тл и частоте f = 50 Гц, тип стали – 1. 1521 – эта сталь отличается от предыдущей только тем, что удельные потери нормируются при магнитной индукции В=1,0 Тл и частоте f = 400 Гц, Эти стали поставляются в виде листов толщиной 0,1…1,0 мм шириной 500…1000 мм и длиной 600…2000 мм. В соответствии с маркой стали магнитные потери для стали 1521 нормируются при магнитной индукции В=1,0 Тл и частоте f = 400 Гц и составляют 19,5 Вт/кг (3,табл. 2.5, табл.2.6). При напряжённости внешнего магнитного поля 2500 А/м индукция в стали 1521 составляет 1,44 Тл. Следовательно, нормированные потери необходимо привести к условиям задания. Поскольку сталь магнитомягкая, то приближённо можно считать, что основная доля потерь – это потери на вихревые токи. Поэтому воспользуемся формулой потери на вихревые токи. Рнорм= β Bнорм 2 ×fнорм 2. (78) искомые потери: Рх = β B1,44 2 ×f50 2. Дл стали 1521: Для стали 1511 потери нормируются при индукции 1,5 Тл. Поскольку у этой стали при напряжённости поля 2500 А индукция составляет 1,44 Тл, то нормируемые потери увеличатся в 1,52/1,442 = 1,085 раза, то есть составят 3Вт/кг×1,085=3,255 Вт/кг. Вывод: Если сталь 1521, предназначенную для работы при частоте 400 Гц применять в условиях, аналогичных применению стали 1511, то есть при частоте 50 Гц, то магнитные потери в стали 1521 будут меньше, чем в стали 1511.
Вариант 1 1. Определите длину и сопротивление медной проволоки марки МТ диаметром 0,9 мм, если ее масса на катушке составляет 10 кг. 2. Определите, во сколько раз отличается напряжённость электрического поля в хладоне-113 и в опущенной в него изолирующей перегородке из фторлона-3, полагая, что в диапазоне частот 50-100 Гц, диэлектрическая проницаемость этих материалов остается неизменной. 3.У сплава марки 64Н сняли кривую намагничивания при комнатной температуре в диапазоне напряженностей магнитного поля от 50 до 500 А/м. Затем, не ослабляя напряженности, нагрели образец до 120о С и сняли при этой температуре обратный ход кривой. Постройте на графике результаты опыта. Вариант 2 1.Между двумя коаксиальными кольцами находится слой затвердевшего алюминия. Определите, как следует изменить толщину этого слоя в расплавленном состоянии, чтобы сопротивление между кольцами не изменилось? 2. Рассчитайте, как соотносятся напряженности поля по концам проходного изолятора из новомикалекса, если один из концов стержня находится при комнатной температуре, а другой нагрет до 6000 С. 3. Постройте кривую намагничивания ферритового образца марки 1000НН при частоте 0,1 МГц в диапазоне напряженностей магнитного поля от 0 до 32 А/м. Вариант 3 1. Электрический ток передается через землю с удельным сопротивлением 120 Ом∙м на расстояние 10 км и возвращается по алюминиевому проводу марки А из проволоки марки АТ сечением 50 мм2. Для ввода тока в землю и вывода из нее используются полушаровые электроды. Определить диаметр этих электродов при условии равенства сопротивлений “земляного” провода и провода из алюминия. 2. Выберите среди ударопрочных фенопластов и опишите такую пластмассу для изоляции электротехнического устройства, работающего в условиях облучения электронами, которая бы обеспечивала наибольшую ёмкость устройства и неизменность этой ёмкости при облучении электронами. Рассчитайте радиус полушара, вдавленного с поверхности в эту пластмассу, если его ёмкость - 10 пФ. 3. Полагая температурный коэффициент магнитной проницаемости феррита 3000НМ не зависящим от напряженности магнитного поля, постройте зависимость магнитной индукции от температуры при напряженности 16 А/м в диапазоне температур 0...140 оС. Вариант 4 1. Опишите физические и электрические свойства, область применения хромели и алюмели и определить соотношение их длин при одинаковых сечении и сопротивлении. 2. Определите толщину наружной изоляции одножильного кабеля при условии равенства напряженностей поля частотой 1 кГц на поверхности изоляции и на границе раздела материалов изоляции. Конструкция изоляции следующая: Жила кабеля, имеющая диаметр 4 мм, покрыта слоем изоляции из хлорсульфированного полиэтилена толщиной 2 мм, затем на эту изоляцию нанесен слой кремнийорганического каучука. 3. Образец из феррита IY группы марки 3000 НМС нагрели до 120 оС и при этой температуре сняли зависимость магнитной проницаемости от напряженности магнитного поля в диапазоне 0...240 А/м, после чего, не снижая напряженности, образец охладили до комнатной температуры и сняли обратный ход кривой. Постройте на графике полученные зависимости. Вариант 5 1. Определите сопротивление 1 км военно-полевого провода для телефонной связи. Военно-полевой провод состоит из 7 стальных жил из стали марки 10 диаметром 0,1 мм и одной медной жилы из меди марки МТ того же диаметра. 2. Жила одножильного кабеля, имеющая диаметр 4 мм, покрыта слоем изоляции из хлорированного полиэтилена толщиной 1 мм, затем на эту изоляцию нанесен слой другого полиолефина толщиной 3,45 мм. Определите материал наружной изоляции при условии равенства напряженностей поля частотой 1 МГц на поверхности изоляции и на границе раздела материалов изоляции.
Дата добавления: 2014-01-03; Просмотров: 1197; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |