Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Политропный процесс

Политропным процессом называется процесс, все состояния которого удовлетворяются условию:

P· nn = Const, (4.24)

где n – показатель политропы, постоянная для данного процесса.
Изобарный, изохорный, изотермический и адиабатный процессы являются частными случаями политропного процесса (Рис.4.5):
при n = ± ¥ n = Const, (изохорный),
n = 0 P = Const, (изобарный),
n = 1 T = Const, (изотермический),
n = l P· n = Const, (адиабатный).
Работа политропного процесса определяется аналогично как при адиабатном процессе:

l = R·(T1 – T2) / (n – 1); (4.25)
l = R·T1·[1 – (n 1/ n 2) n-1] /(n – 1); (4.26)
l = R·T2·[1 – (P2/P1) (n-1)/ n] /(n – 1). (4.27)

Теплота процесса:

q = cn ·(T2 – T1), (4.28)

где cn = cv ·(n - l)/(n – 1) – массовая теплоемкость (4.29)
политропного процесса.

 

 

Тема 5. Термодинамика потока.

<== предыдущая лекция | следующая лекция ==>
Изопроцессы идеального газа | Критическое давление и скорость. Сопло Лаваля
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 287; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.