Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дискретная случайная переменная




Тема 7 Сведения из теории вероятностей и математической статистики

Ваше интуитивное понимание вероятности почти наверняка соответствует задачам этой книги, и поэтому мы опустим традиционный раздел чистой теории вероятностей, хотя он мог бы быть весьма увлекательным. Многие люди непосредственно сталкивались с вероятностями, участвуя в лотереях и азартных играх, и их заинтересованность в том, чем они занимались, часто приводила к удивительно высокой практической компетентности, обычно при полном отсутствии формальной подготовки.

Мы начнем непосредственно с дискретных случайных переменных. Случайная переменная – это любая переменная, значение которой не может быть точно предсказано. Дискретной называется случайная величина, имеющая определенный набор возможных значений. Пример – сумма выпавших очков при бросании двух игральных костей. Пример случайной величины, не являющейся дискретной, – температура в комнате. Она может принять любое из непрерывного диапазона значений и является примером непрерывной случайной величины. К рассмотрению таких величин в этом приложении мы перейдем позже.

Продолжая разговор о примере с двумя игральными костями, предположим, что одна из них зеленая, а другая – красная. Если их бросить, то возможны 36 элементарных исходов эксперимента, поскольку на зеленой кости может выпасть любое число от 1 до 6 и то же самое – на красной. Случайная переменная, определенная как их сумма, которую мы обозначим через , может принимать только одно из 11 числовых значений — от 2 до 12. Взаимосвязь между исходами эксперимента и значениями случайной величины в данном случае показана в табл. A.1.

 

 

Таблица A.1

Красная Зеленая

Предположив, что кости «правильные», мы можем воспользоваться табл. A.1 для определения вероятности каждого значения . Поскольку на костях имеется 36 различных комбинаций, каждый исход имеет вероятность 1/36. Лишь одна из возможных комбинаций {зеленая=1, красная=1} дает сумму, равную 2, так что вероятность равна 1/36. Чтобы получить сумму , нам потребуются сочетания {зеленая=1, красная=6}, либо {зеленая=2, красная=5}, либо {зеленая=3, красная=4}, либо {зеленая=4, красная=3}, либо {зеленая=5, красная=2}, либо {зеленая=6, красная=1}. В данном случае нас устроят 6 возможных исходов, и поэтому вероятность получения 7 равна 6/36. Все эти вероятности приведены в табл. A.2. Если все их сложить, то получится ровно 1. Это будет так, поскольку с вероятностью 100% рассматриваемая сумма примет одно из значений от 2 до 12.

Таблица A.2

Значения
Вероятность 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Совокупность всех возможных значений случайной переменной описывается генеральной совокупностью, из которой извлекаются эти значения. В нашем случае генеральная совокупность – это набор чисел от 2 до 12.





Дата добавления: 2014-01-03; Просмотров: 333; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.027 сек.