Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Спектральная плотность АКФ

Спектральная плотность АКФ может быть определена из следующих простых соображений.

В соответствии с выражением (6.1) АКФ представляет собой функцию скалярного произведения сигнала и его копии, сдвинутой на интервал t, при
-¥ < t < ¥:

Bs(t) = ás(t), s(t-t)ñ.

Скалярное произведение может быть определено через спектральные плотности сигнала и его копии, произведение которых представляет собой спектральную плотность взаимной мощности:

ás(t), s(t-t)ñ = (1/2p)S(w) St*(w) dw.

Смещение сигнала по оси абсцисс на интервал t отображается в спектральном представлении умножением спектра сигнала на exp(-jwt), а для сопряженного спектра на множитель exp(jwt):

St*(w) = S*(w) exp(jwt).

С учетом этого получаем:

Bs(t) = (1/2p)S(w) S*(w) exp(jwt) dw =

= (1/2p)|S(w)|2 exp(jwt) dw. (6.20)

Но последнее выражение представляет собой обратное преобразование Фурье энергетического спектра сигнала (спектральной плотности энергии). Следовательно, энергетический спектр сигнала и его автокорреляционная функция связаны преобразованием Фурье:

Bs(t) Û |S(w)|2 = Ws(w). (6.21)

Таким образом, спектральная плотность АКФ есть не что иное, как спектральная плотность мощности сигнала, которая, в свою очередь, может определяться прямым преобразованием Фурье через АКФ:

|S(w)|2 = Bs(t) exp(-jwt) dt. (6.22)

Последние выражение накладывает определенные ограничения на форму АКФ и методику их ограничения по длительности.

Энергетический спектр сигналов всегда положителен, мощность сигналов не может быть отрицательной. Следовательно, АКФ не может иметь формы прямоугольного импульса, т.к. преобразование Фурье прямоугольного импульса – знакопеременный интегральный синус. На АКФ не должно быть и разрывов первого рода (скачков), т.к. с учетом четности АКФ любой симметричный скачек по координате ±t порождает “разделение” АКФ на сумму определенной непрерывной функции и прямоугольного импульса длительностью 2t с соответствующим появлением отрицательных значений в энергетическом спектре. Пример последнего приведен на рис. 6.7 (графики функций приведены, как принято для четных функций, только своей правой частью).

 

Рис. 6.7. Спектр несуществующей АКФ

 

АКФ достаточно протяженных сигналов обычно ограничиваются по размерам (исследуются ограниченные интервалы корреляции данных от –Т/2 до Т/2). Однако усечение АКФ, это умножение АКФ на прямоугольный селектирующий импульс длительностью Т, что в частотной области отображается сверткой фактического спектра мощности со знакопеременной функцией интегрального синуса sinc(wT/2). С одной стороны, это вызывает определенное сглаживание спектра мощности, что зачастую бывает полезным, например, при исследовании сигналов на значительном уровне шумов. Но, с другой стороны, может происходить и существенное занижение величины энергетических пиков, если в сигнале имеются какие-либо гармонические составляющие, а также появление отрицательных значений мощности на краевых частях пиков и скачков. Пример проявления данных факторов приведен на рис. 6.8.

Рис. 6.8. Вычисление энергетического спектра сигнала по АКФ разной длины

 

Как известно, спектры мощности сигналов не имеют фазовой характеристики и по ним невозможно восстановление сигналов. Следовательно, АКФ сигналов, как временное представление спектров мощности, также не имеет информации о фазовых характеристиках сигналов и восстановление сигналов по АКФ невозможно. Сигналы одной формы, сдвинутые во времени, имеют одинаковые АКФ. Больше того, сигналы разной формы могут иметь сходные АКФ, если имеют близкие спектры мощности.

Перепишем уравнение (6.20) в следующей форме

s(t) s(t-t) dt = (1/2p)S(w) S*(w) exp(jwt) dw,

и подставим в это выражение значение t=0. Полученное равенство хорошо известно и называется равенством Парсеваля

s2(t) dt = (1/2p)|S(w)|2 dw.

Оно позволяет вычислять энергию сигнала, как по временной, так и по частотной области описания сигналов.

<== предыдущая лекция | следующая лекция ==>
Спектральные плотности корреляционных функций | Интервал корреляции сигнала
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 669; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.