КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Весовые функции
Естественным методом нейтрализации нежелательных эффектов усечения сигналов во временной области (и любой другой области аргументов) является изменение окна селекции сигнала таким образом, чтобы частотная характеристика окна селекции при свертке как можно меньше искажала спектр сигнала. Что последнее возможно, показывает, например, даже такая простая модификация прямоугольной функции, как уменьшение в два раза значений ее крайних членов. Фурье-образ модифицированной П-функции уже рассматривался нами в составе сглаживающих фильтров МНК 1-го порядка, отличается от обычной П-функции с тем же размером окна выходом в ноль на частоте Найквиста и несколько меньшей амплитудой осцилляций при небольшом расширении главного максимума. Нейтрализация явления Гиббса в частотной области. Рассмотрение продолжим с формулы (3.1.2) при усечении произвольного оператора фильтра h(n) прямоугольным селектирующим окном ПN(n). Период осцилляций суммы усеченного ряда Фурье (3.1.2) примерно равен периоду первого отброшенного члена ряда. С учетом этого фактора осцилляции частотной характеристики могут быть существенно сглажены путем усреднения по длине периода осцилляций в единицах частоты, т.е. при нормированной свертке с Пr(w) - импульсом, длина которого равна периоду осцилляций r = 2p/(N+1). Эта свертка отобразится во временной области умножением коэффициентов фильтра h(n) на множители, которые являются коэффициентами преобразования Фурье частотной П-образной сглаживающей функции Пr(w): H'N(w) = HN(w) ③ Пr(w) ó hn sN(n) = h(n) ПN(n) sN(n), p(n) = ПN(n) sN(n) = sinc(pn/(N+1)), |n| £ N. (3.2.1) Эта операция носит название сглаживания Ланцоша. Произведение ПN(n) sN(n) ≡ sN(n) представляет собой новое весовое окно селекции p(n) взамен прямоугольного окна. Функцию sN(n) обычно называют временной весовой функцией (окном). Вид и частотная характеристика весового окна Ланцоша в сопоставлении с прямоугольным окном приведены на рис. 3.2.1. Как видно на рисунке, частотная характеристика весовой функции Ланцоша по сравнению с П-образной функцией имеет почти в 4 раза меньшую амплитуду осцилляций, но при этом ширина главного максимума увеличилась примерно на четверть. Отметим, однако, что если амплитуда осцилляций (в единицах амплитуды главного максимума) определяется выбранным типом весовой функции, то ширина главного максимума, которой определяется ширина переходной зоны (вместо скачка функции), зависит от размеров весового окна и соответственно может изменяться под поставленные условия (уменьшаться увеличением размера 2N+1 весового окна). Рис. 3.2.1. Весовая функция Ланцоша. Основные весовые функции. В настоящее время известны десятки различных по эффективности весовых функций. В идеальном случае хотелось бы иметь весовую свертывающую функцию с минимальной амплитудой осцилляций, высокую и узкую в главном максимуме. В таблицах 3.2.1 и 3.2.2 приведены формулы и основные спектральные характеристики наиболее распространенных и часто используемых весовых окон. Носители весовых функций, в принципе, являются неограниченными и при использовании в качестве весовых окон действуют только в пределах окна и обнуляются за его пределами (как и в (3.2.1)), что выполняется без дальнейших пояснений. Для упрощения записи формулы приводятся в аналитической, а не в дискретной форме, с временным окном 2t, симметричным относительно нуля (т.е. 0t). При переходе к дискретной форме окно 2t заменяется окном 2N+1 (полное количество точек дискретизации выделяемой сигнальной функции), а значения t - номерами отсчетов n (t = nDt). Следует заметить, что большинство весовых функций на границах окна (n = N) принимают нулевые или близкие к нулевым значения, т.е. фактическое окно усечения данных занижается на 2 точки. Последнее исключается, если принять 2t = (2N+3)Dt. Таблица 3.2.1. Основные весовые функции
Таблица 3.2.2. Характеристики спектров весовых функций
Сравнительный вид весовых функций приведен на рис. 3.2.2. Расчет функций проведен с исключением нулевых значений на границах весового окна. Спектральные окна Бартлетта и Карре не имеют отрицательных выбросов и применяются, в основном, для усечения корреляционных функций. Функция Карре не имеет нулей и представляет собой положительно убывающую функцию. Функции Хеннинга и Хемминга примерно одного класса, функция Хемминга является улучшенным вариантом функции Хеннинга. Частотные образы функций Бартлетта и Хемминга приведены на рис. 3.2.3. Рис. 3.2.3. Частотные функции весовых окон. Весовые окна Лапласа и Кайзера - усеченные функции соответственно Гаусса и Бесселя. Степень усечения зависит от параметра b. Характеристики функций, приведенные в таблице 3.2.2, действительны при b=3 для окна Лапласа и b=9 для окна Кайзера. При уменьшении значения b крутизна главного максимума сглаживающих функций увеличивается (ширина пика уменьшается), но платой за это является увеличение амплитуды осцилляций. Рис. 3.2.4. Частотные функции весовых окон. Функции Лапласа и Кайзера являются универсальными функциями. По-существу, их можно отнести к числу двупараметровых: размером окна 2t (числом N) может устанавливаться ширина главного максимума, а значением коэффициента b - относительная величина осцилляций на частотной характеристике весовых функций, причем, вплоть до осцилляций П-окна при b=0. Это обусловило их широкое использование, особенно при синтезе операторов фильтров. Попутно заметим, что достаточно гладкие частотные характеристики весовых функций позволяют использовать их в качестве сглаживающих низкочастотных НЦФ. литература Макс Ж. Методы и техника обработки сигналов при физических измерениях: В 2-х томах. - М.: Мир, 1983. Хемминг Р.В. Цифровые фильтры. – М.: Недра, 1987. – 221 с.
Дата добавления: 2014-01-03; Просмотров: 2949; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |