Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства z-преобразования




Важнейшим свойством z-преобразования является свойство его единственности. Любая последовательность s(k) однозначно определяется z-изображением в области его сходимости, и наоборот, однозначно восстанавливается по z-изображению.

Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность: Если s(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов: y(k) = x(k-n).

Y(z) =y(k) zk =x(k-n) zk =znx(k-n) zk-n = znx(m) zm = zn X(z).

Соответственно, умножение z-образа сигнала на множитель zn вызывает сдвиг сигнала на n тактов дискретизации.

Преобразование свертки. При выполнении нерекурсивной цифровой фильтрации односторонними операторами фильтров:

s(k) =h(n) y(k-n), k = 0, 1, 2, …

Z-преобразование уравнения свертки:

S(z) =h(n) y(k-n) zk =h(n) zn y(k-n) zk-n =

=h(n) zny(k-n) zk-n = H(z) Y(z).

Таким образом, свертка дискретных функций отображается произведением z-образов этих функций. Аналогично, для z-преобразования могут быть доказаны все известные теоремы о свойствах z-образов, что вполне естественно, т.к. при z=exp(-jw) эти свойства полностью эквивалентны свойствам спектров функций.

Разложение сигналов на блоки последовательной свертки. Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни ai, и переписать полином в виде произведения двучленов:

S(z) = a0(z-a1)(z-a2)...,

где а0- последний отсчет сигнала (коэффициент при старшей степени z).

Но произведению в z-области соответствует свертка в координатной области, и при обратном преобразовании двучлены (z-ai) превращаются в двухточечные диполи {-ai,1}, а сигнал длиной N представляется сверткой (N-1) диполей:

sk= a0{-a1,1}*{-a2,1}*{-a3,1}*...

Пример. sk = {1.4464, -2.32, 3.37, -3, 1}. S(z) = z4-3z3+3.37z2-2.32z+1.4464. a0 = 1.

Корни полинома S(z): a1 = 0.8+0.8j, a2 = 0.8-0.8j, a3 = 0.7+0.8j, a4 = 0.7-0.8j,

S(z) = (z-0.8-0.8j)(z-0.8+0.8j)(z-0.7-0.8j)(z-0.7+0.8j).

Корни полинома представлены на z-плоскости на рис. 8.1.1. Корни полинома комплексные и четыре двучлена в координатной области также будут комплексными. Но они являются сопряженными, и для получения вещественных функций следует перемножить сопряженные двучлены и получить биквадратные блоки: S(z) = (z2-1.4z+1.13)(z2-1.6z+1.28).

При переходе в координатную область: sk = {1.13, -1.4, 1} * {1.28, -1.6, 1}.

Таким образом, исходный сигнал разложен на свертку двух трехчленных сигналов (функций).

Дифференцирование. Если имеем s(k) «S(z), то z-образ функции ks(k) можно найти, продифференцировав S(z), что бывает полезно для вычисления обратного z-преобразования функций S(z) с полюсами высокого порядка:

ks(k) «z dX(z)/dz.




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 1168; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.