Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Критерии построения оптимальных фильтров




В практике обработки данных используются три основных критерия построения оптимальных фильтров: минимум среднего квадратического отклонения профильтрованного сигнала от его действительного или заданного значения, максимум отношения сигнал/шум и максимум энергетического отношения сигнал/шум на выходе фильтра. При анализе и синтезе фильтров используется аддитивная модель входного сигнала: x(k) = s(k)+q(k), где s(k) - полезная составляющая сигнала, q(k) - составляющая шумов и помех. Синтез оптимальных фильтров производится с максимальным использованием известной априорной информации как о сигналах, которые необходимо выделить, так и о шумах и помехах. Как правило, используется информация о природе полезного сигнала и шума, об их спектральном составе, о корреляционных и взаимных корреляционных характеристиках. Наличие определенных особенностей (различий) в характеристиках сигнала и шума позволяет реализовать фильтр вообще и оптимальный фильтр в частности. Если такие особенности отсутствуют, постановка задачи становится некорректной.

В геофизической практике априорные данные о полезных сигналах, как правило, являются достаточно определенными, особенно для активных методов геофизики (сейсмические методы, электроразведка на переменном токе, индукционные методы ядерной геофизики и пр.). Определение характеристик действующих помех представляет собой более сложную проблему, но даже при полной неопределенности можно допустить, что помеха является нормальным стационарным процессом с нулевым средним значением.

Среднее квадратическое отклонение. При наличии помех абсолютно точное выделение полезного сигнала методами линейной фильтрации, как правило, невозможно. Результат фильтрации

y(k) = h(n) ③ x(k-n) (12.2.1)

отличается от s(k) на величины e(k) = y(k)-s(k), которые являются абсолютными значениями погрешности воспроизведения полезного сигнала по координатам k. Качество фильтра оценивается средним значением квадрата величины e(k):

. (12.2.2)

Во многих задачах обработки геофизических данных не требуется восстановления исходной формы сигнала s(k), т.к. в процессе его дальнейшей обработки осуществляется преобразование сигнала s(k) в сигнал z(k), форма которого может быть более удобной для извлечения (измерения) каких-либо информационных параметров сигнала (например - амплитудного значения, ширины сигнала на половине максимального значения и т.п.). В этом случае оптимальный фильтр может проектироваться непосредственно на получение выходного сигнала z(k). Качество таких фильтров, получивших название формирующих, оценивается средним значением квадрата величины e(k) получения сигнала заданной формы:

. (12.2.2')

Выражения (12.2.2) дают возможность определить значения h(k) фильтра по критерию минимума среднего квадратического отклонения выходного сигнала от его действительной или заданной формы. Еще раз отметим, что данный критерий исходит из вероятностно - статистической модели экспериментальных данных и хорошо себя показал при обработке геофизических данных, но его возможности могут быть ограничены при количественной интерпретации геофизических аномалий.

Амплитудное отношение сигнал/шум. При постановке задачи обнаружения (установления факта наличия) в экспериментальных данных сигнала известной формы для проектирования фильтра используется, как правило, критерий максимума пикового отношения сигнал/шум на выходе фильтра:

rа = yэкс/s,

где yэкс - экстремальное (максимальное или минимальное) значение амплитуды сигнала, s - средний квадратический уровень амплитудных значений помех. Если в полезном сигнале отсутствует четко выраженный экстремум, а сам сигнал достаточно протяженный по аргументу (что обычно имеет место в геофизической практике), то в качестве критерия используется отношение средних квадратов амплитуд сигнала и шума:

, (12.2.3)

где y2 - средний квадрат амплитуды сигнала в пределах его формы.

Энергетическое отношение сигнал/шум. При узко конкретной задаче обнаружения сигнала степень искажения самого сигнала может не ограничиваться. Если кроме обнаружения сигнала, как основной цели обработки данных, ставится и задача оценки его формы, то в этом случае для проектирования фильтра обычно используется критерий максимума энергетического отношения сигнал/шум:

r = Еy/Eq, (12.2.4)

где Еу и Eh - энергия соответственно сигнала и шума на выходе фильтра.




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 514; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.