Определение. Центральным моментом порядка k случайной величины Х называется математическое ожидание величины
Для дискретной случайной величины: .
Для непрерывной случайной величины: .
Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.
studopedia.su - Студопедия (2013 - 2026) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление