Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Когерентные световые волны. Интерференция волн

Когерентностьюназывается согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении.

Пусть в данную точку пространства приходят две световые волны Е1 и Е2 одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Е1 = А1соs(wt + a1),

Е2 = A2cos(wt + a2).

 

Согласно принципу суперпозиции, напряженность результирующего поля равна Е = Е1 + Е2. Тогда амплитуда А результирующего колебания той же частоты может быть определена из выражения:

 

А2 = А1222 + 2А1А2соsj, (1)

 

где j = a1 - a2 = const.

Если частоты колебаний в обеих волнах w одинаковы а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными. Дляэлектромагнитных волн существует дополнительное ограничение – не дают интерференционной картины когерентные волны ортогональной поляризации.

Приналожении когерентных волн они дают устойчивое колебание с неизменной амплитудойА = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах

 

1 –А2ê £ A £ а12.

 

Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

Если j = p, тогда соsj = -1, и А1 = А2, то амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.

В случае некогерентных волн j непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение <cоsj>t = 0. Поэтому слагаемое 2А1А2соsj в уравнении (1) равно нулю и

 

2> = <А12> + <А22>,

 

откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

 

I = I1 + I2 .

 

В случае когерентных волн, соsj имеет постоянное во времени значение (но свое для каждой точки пространства), так что

 

I = I1 + I2 + 2Ö I1 × I2 cosj. (2)

 

В тех точках пространства, для которых соsj > 0, I> I1 +I2; в точках, для которых соsj < 0, I<I1+I2. При наложении когерентных световых волн происходит перераспределение энергии светового потока в пространстве (при глобальном выполнении закона сохранения энергии), в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности (интерференционная картина). Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I1=I2. Тогда согласно (2) в максимумах I = 4I1, в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I1.

Если имеются отклонения от сформулированных условий когерентности, например, частоты двух складываемых монохроматических волн несколько отличаются, то интерференционная картина может становиться неустойчивой, возникает эффект плывущей картины. Если же частоты складываемых волн совпадают, но разность фаз между ними изменяется со временем, то интерференционная картина, как правило, остается стационарной, но ее контрастность (соотношение интенсивностей соседних максимумов и минимумов) уменьшается.

Все естественные источники света (Солнце, лампочки накаливания и т.д.) не излучают электромагнитных волн одной определенной и строго постоянной частоты, поэтому световые волны, излучаемые любыми независимыми естественными источниками света, всегда некогерентны и, используя два таких источника, невозможно получить интерференцию света.

Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10-8с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10-8с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения. Когерентность существует только в пределах одного цуга. Средняя продолжительность одного цуга τ называется временем когерентности. Если волна распространяется в однородной среде, то фаза колебаний в какой-либо определенной точке пространства остается постоянной только в течение времени когерентности. За это время волна распространяется на расстояние l ког = Vτ, называемое длиной когерентности (или длиной цуга). Колебания в точках, удаленных друг от друга на расстояниях больших длины когерентности вдоль направления распространения волны, будут некогерентными.

Лазерное излучение характеризуется высокой степенью монохроматичности, т.е излучение происходит на одной определенной и строго постоянной частоте, поэтому можно наблюдать интерференцию световых пучков, излучаемых двумя разными лазерами.

А как можно, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части. Если заставить эти две волны пройти разные оптические пути, а потом наложить их друга на друга, то наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность ³ 1м, то будет наблюдаться наложение колебаний, соответствующих разным цугам, разность фаз между которыми будет непрерывно изменяться хаотическим образом, и интерференция не наблюдается.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

 

 

n1 S1

О

n2 S2 P ` V

 

 

Рис.2.

До точки Р первая волна проходит в среде показателем преломления n1 путь S1, вторая волна проходит в среде с показателем преломления n2 путь S2. Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А1соsw(t – S1/V1), а вторая волна -колебание А2соsw(t – S2/V2), где V1 и V2 - фазовые скорости волны в первой и второй средах соответственно. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна

 

j = w(S2/V2 – S1/V1) = (wc)(n2S2 – n1S1).

 

Заменим w/с через 2pn/с = 2p/lо, тогда


j = (2p/lо)D, (3)

 

где D= n2S2 – n1S1 = L2 - L1 - величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.

Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:

 

D = ±mlо (m = 0,1,2,….), (4)

 

то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Таким образом, (4) есть условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме:

 

D = ± (m + 1/2)lо (m =0, 1,2,...), (5)

 

то j = ± (2m + 1)p, то есть колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.

Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.

3.Методы наблюдения интерференции света: опыт Юнга, метод зеркал Френеля, бипризма Френеля. Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) источником света служит ярко освещенная щель S, от которой световая волна падает на две равноудаленные щели А1 и А2, являющиеся двумя когерентными источниками света (две цилиндрические волны). Интерференционная картина наблюдается на экране Е, расположенном на некотором расстоянии l параллельно А1А2. Начало отсчета выбрано в точке 0, симметричной относительно щелей.

x

 
 


P

A1 S1

Плоская св. S O

волна

A2 S2 l

Е

Рис.3.

 

Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей D =nS2 - n S1 = L2 – L1. Для получения различимой интерференционной картины расстояние между источниками А1А2 = d должно быть значительно меньше расстояния l от источников до экрана. Расстояние х на экране, в пределах которого образуются интерференционные полосы, значительно меньше l. При этих условиях можно положить, что S2 + S1» 2 l. Из рис.3 по теореме Пифагора имеем

 

S22 = l 2 + (x +d/2)2; S12 = l 2 + (x - d/2)2,

 

откуда S22 - S12 = 2xd, а

 

S2 – S1» xd/ l.

 

Умножив это выражение справа и слева на показатель преломления среды n, получим

D = nxd/ l. (6)

 

Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных

 

хmax = ± m l l/d, (m = 0, 1,2,.,,.). (7)

 

Здесь l = l0/n - длина волны в среде, заполняющей пространство между источниками и экраном.

Координаты минимумов интенсивности будут:

 

хmin = ±(m +1/2) l l/d, (m = 0,1,2,...). (8)

 

Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы не зависят от порядка интерференции (величины m), являются постоянными для данных условий эксперимента l,l,d и имеют одинаковое значение, равное

 

Dх = l l/d. (9)

 

Измеряя параметры, входящие в (9), можно экспериментально определить длину волны оптического излучения l. Согласно (9) Dх пропорционально l /d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d<< l. Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы и минимумы интенсивности первого (m =1), второго (m = 2) порядков и т.д., которые представляют собой чередующиеся светлые и темные полосы, параллельные друг другу.

Такая картина справедлива при освещении экрана монохроматическим светом (l0 = const). При освещении белым светом интерференционные максимумы и минимумы для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для главного максимума максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. Ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, а дальше – зоны красного цвета.

Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.

Наблюдать интерференционную картину можно также с помощью зеркала Френеля, рис 4. (рис. 4.3 из Ландсберга, стр.71). Бизеркало Френеля состоит из двух плоских зеркал, расположенных под углом, близким 1800.

 

Рис.4.

Свет от источника S падает расходящимся пучком на бизеркало, отражается зеркалами 1 и 2 и представляет собой две системы когерентных волн, как бы исходящих из источников S1 и S2, являющихся мнимыми изображениями источника S в зеркалах 1 и 2. Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые волны приходят в различные точки экрана Е с некоторой разностью фаз, определяемой различием в длине пути от источников S1 и S2 до соответствующей точки экрана, и интерферируют. Освещенность экрана в разных точках будет различной. Интерференционная картина будет тем шире, чем меньше угол между зеркалами, а экран должен быть расположен достаточно далеко от зеркала. Прямые лучи от источника света S не доходят до экрана, так как их задерживает заслонка Z.

Бипризма Френеля (рис.5 –рис.247 из Трофимовой, стр.323) состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами.

 

Рис.5

Свет от источника S преломляется в обеих призмах, в результате за призмой распространяются световые волны исходящие как бы из двух мнимых источников света S1 и S2, являющихся когерентными. На достаточно удаленном от призмы экране Е происходит наложение и интерференция когерентных световых волн.

Наблюдать интерференционную картину можно также с помощью зеркала Лойда, билинзы Бийе и других оптических устройств, а также при отражении света от тонких прозрачных пленок.

<== предыдущая лекция | следующая лекция ==>
Световые волны | Интерференция света при отражении от тонких пластинок. Полосы равной толщины и равного наклона
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 9118; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.