Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Модели как инструменты познания

Инструментарий познания

Этимология слова «познание» основывается на сочетаниях «поиск знания» или «постижение знаний» [11]. В качестве основных инструментов поиска знаний рассматривают модели и методы. Исследование неизбежно связано с абстракцией и формализацией изучаемой действительности, представлением её в виде модели системы, процесса, среды. Слово «модель» произошло от латинского слова «modelium» и означает: мера, образ, способ. В исследовании модель рассматривается как наиболее эффективное средство познания реальности.

По выражению акад. Н. Моисеева [12], «модель содержит в себе потенциальное знание, которое человек, исследуя ее, может приобрести, сделать наглядным и использовать в своих практических, жизненных нуждах». Необходимо понимать, что модель, будучи образом исследуемой системы или другого объекта, никогда не может достигнуть ее полного подобия. При построении модели прибегают к известным упрощениям, цель которых – стремление отобразить не весь объект, а охарактеризовать некоторый его «срез», т.е. выделить важные для исследования свойства. Построение модели всегда опирается на систему гипотез о понимании исследователем изучаемого объекта. С этой позиции заслуживает внимания определение модели, данное В.Могилевским [11]: «моделью называется специально синтезированный для удобства исследований объект, который обладает необходимой степенью подобия исходному…». Необходимая степень подобия подразумевает, что модель реагирует так же, как и система на одинаковые входные сигналы. Модель, отражающая однозначное соответствие реальной системе в области функций или структуры, называется изоморфной. При построении моделей сложных систем практически не удается достигнуть полного изоморфизма, за исключением моделей клонирования и, частично, искусственного интеллекта. Поэтому исследуемую систему, применив к ней определенное преобразование, упрощают. Модель такой системы называется гомоморфной моделью. Основные виды гомоморфных моделей, используемых в исследовании проблем управления, представлены на рис. 2.4.

 

Математические
Имитационные
Семиотические
Кибернетические
Структурные
Аналоговые
Физические
Абстрактные
Материальные
Гомоморфные
Изоморфные
Клоны
Искусственный интеллект

 

 


Рис. 2.4. Общие классы моделей и их связи

 

Гомоморфные модели представляются материальными и абстрактными моделями. Материальные модели – это воспроизведение основных геометрических, физических, динамических и функциональных характеристик изучаемого объекта. Материальные модели включают физические и аналоговые. К абстрактным моделям относят математические, имитационные и семиотические. На основе принципов построения абстрактных и аналоговых моделей создаются структурные модели. Важный класс представляют кибернетические модели, представляющие собой синтез структурных и математических моделей.

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств (линейные модели), интегральных и дифференциальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.). В зависимости от двух фундаментальных признаков построения математической модели – от степени определенности исходной информации и изменений ее во времени – различают детерминистические и стохастические, статические и динамические модели (рис. 2.5).

Цель схематического представления моделей на рис. 2.5 – отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими; 2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

 

Математические модели
Детерминистическая
Стохастическая
Статическая
Динамическая

 

 


Рис. 2.5. Классы математических моделей

 

К настоящему времени накоплен достаточно большой арсенал математических и имитационных моделей специального приложения – это модели экономики, модели управления и модели прогноза (рис. 2.6).

Имитационные модели
Модели экономики Балансовые Эконометрические Экономико-математические Экономико-статистические
Модели управления Оптимизационные Теории массового обслуживания Теории игр Оптимального управления Системной динамики  
Модели прогноза Трендовые Регрессионные Функции насыщения Функции роста
Математические модели

 

Рис.2.6. Классификация моделей

<== предыдущая лекция | следующая лекция ==>
Фундаментальные обобщения | Методы научного исследования
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 683; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.