Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Раскрытие неопределенностей





Если некоторый предел существует, но не может быть вычислен при помощи теорем о конечных пределах или теорем о бесконечно малых, бесконечно больших и локально ограниченных функциях, то говорят, что этот предел имеет неопределенность и указывают ее вид. Основные виды неопределенностей: .

Чтобы вычислить предел, имеющий неопределенность, нужно предварительно преобразовать функцию, стоящую под знаком предела, таким образом, чтобы неопределенность исчезла, т.е. раскрыть неопределенность. Для этой цели рекомендуется использовать определенные правила.

Правило 1. Чтобы раскрыть неопределенность при , образованную

отношением двух многочленов или иррациональных функций, нужно в числителе и знаменателе вынести за скобки старшие степени х и сократить дробь на степень х.

Пример.

(здесь использовано, что при ).

Из правила 1 следует, что для раскрытия неопределенности при , образованной делением целых многочленов одинаковой степени, достаточно вычислить отношение коэффициентов при старших степенях переменной х:

. (8)

Правило 2. Чтобы раскрыть неопределенность при , где а – число, образованную отношением двух функций, нужно в числителе и знаменателе дроби выделить критический множитель (х – а), и сократить дробь на него.

Пример. (здесь критический множитель это (х – 3), для его выделения использовано разложение многочленов на множители).

Для выделения критического множителя в случае, когда неопределенность образована отношением тригонометрических, показательных, или логарифмических функций, используют принцип замены бесконечно малых функций: при вычислении предела можно заменить любой бесконечно малый сомножитель на ему эквивалентный. При этом можно использовать теоретические соотношения эквивалентностей (см. формулы (1) (7)).

Пример.

(здесь критический множитель – это (х – 0) = х, для его выделения использован принцип замены эквивалентных бесконечно малых и соотношения эквивалентностей (2) и (5)).

 

Правило 3. Чтобы раскрыть неопределенность , нужно свести ее ко второму замечательному пределу, который может быть записан в двух формах:

или ;

здесь е – это иррациональное число, которое можно представить в виде бесконечной непериодической десятичной дроби: е = 2,7182818… ().

Пример.

.

При вычислении предела учтено, что при ,

, при .

 





Дата добавления: 2014-01-03; Просмотров: 415; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.