![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Раскрытие неопределенностейЕсли некоторый предел существует, но не может быть вычислен при помощи теорем о конечных пределах или теорем о бесконечно малых, бесконечно больших и локально ограниченных функциях, то говорят, что этот предел имеет неопределенность и указывают ее вид. Основные виды неопределенностей: Чтобы вычислить предел, имеющий неопределенность, нужно предварительно преобразовать функцию, стоящую под знаком предела, таким образом, чтобы неопределенность исчезла, т.е. раскрыть неопределенность. Для этой цели рекомендуется использовать определенные правила. Правило 1. Чтобы раскрыть неопределенность отношением двух многочленов или иррациональных функций, нужно в числителе и знаменателе вынести за скобки старшие степени х и сократить дробь на степень х. Пример. (здесь использовано, что Из правила 1 следует, что для раскрытия неопределенности
Правило 2. Чтобы раскрыть неопределенность Пример. Для выделения критического множителя в случае, когда неопределенность Пример. (здесь критический множитель – это (х – 0) = х, для его выделения использован принцип замены эквивалентных бесконечно малых и соотношения эквивалентностей (2) и (5)).
Правило 3. Чтобы раскрыть неопределенность
здесь е – это иррациональное число, которое можно представить в виде бесконечной непериодической десятичной дроби: е = 2,7182818… ( Пример.
При вычислении предела учтено, что
Дата добавления: 2014-01-03; Просмотров: 515; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |