КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Способы представления моделей
Классификация видов моделирования систем В основе классификации видов моделирования систем лежат различные признаки, такие как - степень полноты модели; - характер изучаемых процессов в системе; - форма представления системы. Классификация видов моделирования систем приведена на рис. 1.3. Основой моделирования является теория подобия, из которой следует, что абсолютное подобие может иметь место лишь при замене одного объекта другим, точно таким же. При моделировании абсолютное подобие не имеет места, и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования системы. Поэтому в качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные.
Рис. 1.3. Классификация видов моделирования систем
Полные модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. В основе приближенного моделирования. Лежит подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. В зависимости от характера изучаемых процессов в системе виды моделирования подразделяются на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. Стохастическое моделирование учитывает вероятностные процессы и события. Статическое моделирование служит для описания поведения объекта в фиксированный момент времени, а динамическое — для исследования объекта во времени. Дискретное,непрерывное и дискретно-непрерывное моделирования используются для описания процессов, имеющих изменение во времени. При этом оперируют аналоговыми, цифровыми и аналого-цифровыми моделями. В зависимости от формы представления объекта моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания (например, ситуации микромира). Мысленное моделирование реализуется в виде наглядного, символического и математического. При наглядном моделировании на базе представлений человека о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования закладывается гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается на применении аналогий различных уровней. Для достаточно простых объектов наивысшим уровнем является полная аналогия. С усложнением системы используются аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта. Макетирование применяется, когда протекающие в реальном объекте процессы не поддаются физическому моделированию либо могут предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов. В основе языкового моделирования лежит некоторый тезаурус, который образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус - словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову может соответствовать несколько понятий. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий — составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта. Примеры знаковых моделей: Математические – представлены математическими формулами, отображающими связь параметров. Специальные – представлены на специальных языках (ноты, химические формулы). Алгоритмические – программы. Математическое моделирование - это процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В принципе, для исследования характеристик процесса функционирования любой системы математическими методами, включая и машинные, должна быть обязательно проведена формализация этого процесса, т. е. построена математическая модель. Исследование математической модели позволяет получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, требуемой достоверности и точности решения задачи. Любая математическая модель, как и всякая другая, описывает реальный объект с некоторой степенью приближения. Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т. д.) или логических условий. Аналитическая модель исследуется следующими методами: · аналитическим, когда стремятся получить в общем виде явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы; · численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных; качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения); · качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, устойчивость). В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования БС. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм. При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы. Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование — наиболее эффективный метод исследования БС, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования. В имитационном моделировании различают метод статистического моделирования и метод статистических испытаний (Монте-Карло). Если результаты, полученные при воспроизведении на имитационной модели, являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей обработкой информации. Поэтому целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т. е. появился метод статистического моделирования. Метод имитационного моделирования применяется для оценки вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено в основу структурного, алгоритмического и параметрического синтеза БС, когда требуется создать систему с заданными характеристиками при определенных ограничениях. Система должна быть оптимальной по некоторым критериям эффективности. Комбинированное (аналитико-имитационное) моделирование позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей производится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического или имитационного моделирования в отдельности. Информационное моделирование (часто называемое кибернетическим) связано с исследованием моделей, в которых отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируются некоторые связи между выходами и входами. Таким образом, в основе информационных (кибернетических) моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести данную функцию на имитационной модели, причем на совершенно другом математическом языке и, естественно, иной физической реализации процесса. Структурно-системное моделирование базируется на некоторых специфических особенностях структур определенного вида, используя их как средство исследования систем или разрабатывая на их основе с применением других методов формализованного представления систем (теоретико-множественных, лингвистических и т. п.) специфические подходы к моделированию. Структурно-системное моделирование включает: методы сетевого моделирования; сочетание методов структуризации с лингвистическими (языковыми); структурный подход в направлении формализации построения и исследования структур разного типа (иерархических, матричных, произвольных графов) на основе теоретико-множественных представлений и понятия номинальной шкалы теории измерений. Ситуационное моделирование основано на модельной теории мышления, в рамках которой можно описать основные механизмы регулирования процессов принятия решений. В основе модельной теории мышления лежит представление о формировании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное поведение человека строится путем формирования целевой ситуации и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенными отношениями, отображающими семантику предметной области. Модель объекта имеет многоуровневую структуру и представляет собой тот информационный контекст, на фоне которого протекают процессы управления. Чем богаче информационная модель объекта и выше возможности ее манипулирования, тем лучше и многообразие качество принимаемых решений при управлении. При реальном моделировании используется возможность исследования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования проводятся как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т. д.). Реальное моделирование является наиболее адекватным, но его возможности ограничены. Например, проведение реального моделирования АСУП требует, во-первых, наличия такой АСУ и, во-вторых, проведения экспериментов с управляемым объектом, т. е. предприятием, что в большинстве случаев невозможно. Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. Натурный эксперимент подразделяется на научный эксперимент, комплексные испытания и производственный эксперимент. Научный эксперимент характеризуется широким использованием средств автоматизации проведения, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента. В соответствии с этим появилось новое научное направление - автоматизация научного эксперимента и новая специализация в рамках специальности АСУ - АСНИ (автоматизированные системы научных исследований и комплексных испытаний). Одна из разновидностей эксперимента - комплексные испытания, когда вследствие повторения испытаний объектов в целом (или больших частей системы) выявляются общие закономерности о характеристиках качества, надежности этих объектов. В этом случае моделирование осуществляется путем обработки и обобщения сведений о группе однородных явлений. Наряду со специально организованными испытаниями возможна реализация натурного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, т. е. можно говорить о производственном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получают его обобщенные характеристики. Необходимо помнить про отличие эксперимента от реального протекания процесса. Оно заключается в том, что в эксперименте могут появиться отдельные критические ситуации и определиться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процесс функционирования объекта. Физическое моделирование, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени или рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, фиксируемые в некоторый момент времени. Наибольшие сложность и интерес с точки зрения корректности получаемых результатов представляет физическое моделирование в реальном масштабе времени. Реальное моделирование является наиболее адекватным, но при этом его возможности с учётом особенностей реальных объектов ограничены. С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Под цифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины. Особый вид моделирования - кибернетическое моделирование, в котором отсутствует непосредственное подобие между реальным объектом и моделью. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «чёрный ящик», имеющий ряд входов и выходов, и моделируются некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отношение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта.
Моделирование теснейшим образом связано с проектированием. Обычно сначала проектируют систему, потом её испытывают, потом снова корректируют проект и снова испытывают, и так до тех пор, пока проект не станет удовлетворять предъявляемым к нему требованиям. Процесс «проектирование-моделирование» цикличен. При этом цикл имеет вид спирали — с каждым повтором проект становится все лучше, так как модель становится все более детальной, а уровень описания точнее. Процесс моделирования есть процесс перехода из реальной области в виртуальную (модельную) посредством формализации, далее происходит изучение модели (собственно моделирование) и, наконец, интерпретация результатов как обратный переход из виртуальной области в реальную. Итак, в самом простом случае технология моделирования подразумевает 3 этапа: формализация, собственно моделирование, интерпретация (рис. 1.4). Рис. 1.4. Процесс моделирования (базовый вариант) Если требуется уточнение, эти этапы повторяются вновь и вновь: формализация (проектирование), моделирование, интерпретация. Спираль! Вверх по кругу. Более подробно весь цикл разработки показан на рис. 1.5, где отражены методы, способы, приёмы, с помощью которых реализуется каждый из этапов. Поскольку моделирование — способ замещения реального объекта его аналогом, то возникает вопрос: насколько аналог должен соответствовать исходному объекту? Вариант 1: соответствие — 100%. Очевидно, что точность решения в этом случае максимальна, а ущерб от применения модели минимален. Но затраты на построение такой модели бесконечно велики, так как объект повторяется во всех своих деталях. Фактически, создаётся точно такой же объект путём копирования его до атомов (что само по себе не имеет смысла). Рис. 1.5. Основные подсистемы при проектировании комплексных моделей
Вариант 2: соответствие — 0%. Модель совсем не похожа на реальный объект. Очевидно, что точность решения минимальна, а ущерб от применения модели максимален, бесконечен. Но затраты на построение такой модели нулевые. Конечно, варианты 1 и 2 — это крайности. На самом деле модель создаётся из соображений компромисса между затратами на её построение и ущербом от неточности её применения. Это точка между двумя бесконечностями. То есть, моделируя, следует иметь в виду, что исследователь (моделировщик) должен стремиться к оптимуму суммарных затрат, включающих ущерб от применения и затраты на изготовление модели (см. рис. 1.6). Рис. 1.6. Соотношение суммарных затрат и точности Если просуммировать две кривые затрат — получится одна кривая общих затрат. Оптимум на суммарной кривой лежит между этими крайними вариантами. Видно, что неточные модели не нужны, но и абсолютная точность тоже не нужна, да и невозможна. Частое и распространённое заблуждение при построении моделей — требовать «как можно точнее». «Модель — поиск конечного в бесконечном» — эта мысль принадлежит Д. И. Менделееву. Что отбрасывается, чтобы превратить бесконечное в конечное? В модель включаются только существенные аспекты, представляющие объект, и отбрасываются все остальные (бесконечное большинство). Существенный или несущественный аспект описания определяют согласно цели исследования. То есть каждая модель составляется с какой-то целью. Начиная моделирование, исследователь должен определить цель, отделив её от всех возможных других целей, число которых, по-видимому, бесконечно. К сожалению, указанная на рис. 1.6 кривая является умозрительной и реально до начала моделирования построена быть не может. Поэтому на практике действуют таким образом: двигаются по шкале точности слева направо, то есть от простых моделей («Модель 1», «Модель 2»…) ко все более сложным («Модель 3», «Модель 4»…). А процесс моделирования имеет циклический спиралевидный характер: если построенная модель не удовлетворяет требованиям точности, то её детализируют, дорабатывают на следующем цикле (см. рис. 1.7). Рис. 1.7. Спиралевидный характер процесса
Улучшая модель, следят, чтобы эффект от усложнения модели не превышал связанные с этим затраты. Как только исследователь замечает, что затраты на уточнение модели превышают эффект от точности при применении модели, следует остановиться, поскольку точка оптимума достигнута. Такой подход всегда гарантирует окупаемость вложений. Из всего сказанного следует, что моделей может быть несколько: приближенная, более точная, ещё точнее и так далее. Модели как бы образуют ряд. Двигаясь от варианта к варианту, исследователь совершенствует модель. Для построения и совершенствования моделей необходима их преемственность, средства отслеживания версий и так далее, то есть моделирование требует инструмента и опирается на технологию. Следует различать два понятия — «модель» и «задача». Модель связывает переменные между собой законами. Эти законы действуют независимо от того, какая сейчас задача стоит перед исследователем, т.е. модель объективна. Исследователь, как субъект, имеющий собственные цели и потребности, ставит перед моделью задачи, требующие решения при возникновения у него проблемы. Поэтому задача — это совокупность вопроса и модели. Можно к модели задавать все новые и новые вопросы и при этом не менять модель, но менять задачу. То есть модель — способ нахождения ответов на вопросы. Чтобы ответить на поставленный вопрос, модель должна быть преобразована по правилам, обеспечивающим её эквивалентность, к виду, соответствующему ответу на вопрос. Это означает, что модель должна быть сформирована по правилам определённой алгебры (алгебра есть правила преобразования). А процедура, которая помогает применить такие правила к модели, называется методом.
Дата добавления: 2014-01-03; Просмотров: 2779; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |