Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачи, приводящие к понятию производной. Пусть на плоскости Oxy дана непрерывная кривая y = f(x) и необходимо найти уравнение касательной к этой кривой в точке M0(x0;y0)

Дифференцирования

Лекция 1. Понятие производной. Основные правила

1.1 Задача о касательной

Пусть на плоскости Oxy дана непрерывная кривая y = f(x) и необходимо найти уравнение касательной к этой кривой в точке M0(x0;y0).

 

 

Пусть M0M1 – секущая, . Под касательной к кривой y = f(x) в точке M0 естественно понимать предельное положение секущей M0M1 при приближении точки M1 к точке M0, т.е. при ®0.

Уравнение прямой, проходящей через точку M0, в соответствии с формулой уравнения прямой, проходящей через точку M0:

, .

Из DM0M1N имеем при приближении точки M1 к точке M0, что . Значит угловой коэффициент касательной .

Таким образом, уравнение касательной можно записать так:

, где .

 

1.2 Задача о скорости движения

Пусть вдоль некоторой оси движения точка по закону S = S(t), где S – пройденный путь, t – время, и необходимо найти скорость точки в момент t0.

К моменту времени t0 пройденный путь равен S0= S(t0), а к моменту (t0+t) - путь S0+DS = S(t0+t).

Тогда за промежуток Dt средняя скорость будет . Чем меньше Dt, тем лучше средняя скорость характеризует движение точки в момент t0. Поэтому под скоростью точки в момент t0 естественно понимать предел средней скорости за промежуток от t0 до t0+Dt, тогда Dt®0, т.е.

.

3.1 Задача о производительности труда

Пусть функция U = U(t) выражает количество произведенной продукции U за время t и необходимо найти производительность труда в момент t0.

За период времени от t0 до t0+Dt количество произведенной продукции изменяется от значения U0 = U(t0) до значения U0+DU = U(t0+Dt); тогда средняя производительность труда за этот период времени . Очевидно, что производительность труда в момент времени t0 можно определить как предельное значение средней производительности за период времени от t0 до t0+Dt при Dt®0, т.е.

.

Рассматривая три различные по характеру задачи, мы пришли к пределу одного вида. Этот предел играет очень важную роль в математическом анализе, являясь основным понятием дифференциального исчисления.

 

<== предыдущая лекция | следующая лекция ==>
Лекция 3. Индивид, индивидуальность, личность, социализация | Определение производной
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 657; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.