Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение производной


Определение 2.1Пусть функция y = f(x) определена в некоторой окрестности точки х0. Предел отношения приращения функции в этой точке (если он существует) к приращению аргумента, когда Dх ® 0, называется производной функции f(x) в точке х0.

Обозначения: или

.

Вычисление производной называется дифференцированием функции.

Если функция в точке х имеет конечную производную, то функция называется дифференцируемой в этой очке. Функция, дифференцируемая во всех точках промежутка Х, называется дифференцируемой на этом промежутке.

Из задачи о касательной вытекает геометрический смысл производной: производная есть угловой коэффициент касательной (тангенс угла наклона), проведенной к кривой y = f(x) в точке х0, т.е. .

Тогда уравнение касательной к кривой y = f(x) в точке M(х0, f(x0)) примет вид

или .

Уравнение нормали (перпендикуляра) к кривой y = f(x) в точке M(х0, f(x0)) имеет вид:

.

 

Из задачи о скорости движения следует механический смысл производной: производная пути по времени есть скорость точки в момент : , а производная скорости по времени есть ускорение точки в момент : .

Из задачи о производительности труда следует, что производная объема произведенной продукции по времени есть производительность труда в момент .

 

<== предыдущая лекция | следующая лекция ==>
Задачи, приводящие к понятию производной. Пусть на плоскости Oxy дана непрерывная кривая y = f(x) и необходимо найти уравнение касательной к этой кривой в точке M0(x0;y0) | Лекция 2. Основные правила дифференцирования

Дата добавления: 2014-01-03; Просмотров: 162; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. II этап. Диагностирование состоя­ния пациента: определение его потребно­стей и выявление проблем, постановка сестринского диагноза.
  2. IV. Экспериментальное определение параметров схемы замещения трансформаторов.
  3. А. Определение износа объекта недвижимости
  4. Важной заслугой Т.Р.Мальтуса стало исследование проблемы ренты. Приняв за основу определение стоимости товара трудом не затрачен-
  5. Вопрос 1. Эффективность и эффект: определение и характеристика
  6. Вопрос Определение понятий информационная безопасность и защита информации
  7. Вопрос №1 Определение и значение кровообращения.
  8. Вычисление значения фактора. Отбор переменных-заменителей. Определение подгонки модели
  9. Геометрический и физический смысл производной
  10. Дадим определение понятиям наука и техника.
  11. Дать определение документу - протокол
  12. Дать определение каждому оперативному информационному документу

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.